
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Feature-Based Composition of
Software-Systems

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Masterstudium

Software Engineering

Eingereicht von:

Stefan Fischer

Angefertigt am:

Institute for Software Systems Engineering

Beurteilung:

Univ.-Prof. Dr. Alexander Egyed M. Sc.

Mitwirkung:

Dr. Roberto Lopez Herrejon M. Sc.

Linz, Februar, 2014

Contents

Danksagung iii

Kurzfassung v

Abstract vii

1 Introduction 1

1.1 Software Reuse . 1

1.1.1 Clone-and-Own . 1

1.1.2 Software Product Line Engineering 3

1.2 Goals of this Thesis . 5

1.3 Chapter Description . 7

2 Background and Example 9

2.1 Example . 9

2.2 Modules . 13

2.3 Associations . 14

3 Workflow & Principles 17

3.1 Overview . 17

3.2 Extraction . 20

3.3 Composition . 21

4 Technical Realization 23

4.1 Data structures . 23

4.2 Extraction . 27

4.2.1 Module Calculation 27

4.2.2 Intersecting . 27

4.2.3 Sequencing . 30

4.3 Composition . 32

4.3.1 Selecting Code . 32

4.3.2 Tree Merging . 36

4.3.3 References . 37

4.3.4 Code Order . 39

ii CONTENTS

5 Tool Support 41
5.1 Demo Scenario . 41
5.2 Other Capabilities . 52

6 Implementation 57
6.1 Data structure and Core Operations 57

6.1.1 Features and Modules 57
6.1.2 Nodes and Artifacts 58
6.1.3 Composition . 59
6.1.4 Ordering . 61

6.2 Tool . 64
6.2.1 Project . 64
6.2.2 Representation . 66

6.3 Parsers . 67
6.3.1 EMF-Parser . 67
6.3.2 Java-Parser . 70

6.4 Printer . 70

7 Evaluation 71
7.1 Case Studies . 71

7.1.1 Draw . 72
7.1.2 VOD . 72
7.1.3 ArgoUML . 72
7.1.4 Model Analyzer . 73

7.2 Evaluation Scheme . 74
7.3 Evaluation Metrics . 75

7.3.1 Composition Runtime 75
7.3.2 Correctness . 76
7.3.3 Completeness . 77
7.3.4 Warnings . 79

7.4 Analysis . 81

8 Threats to Validity 83

9 Related Work 85

10 Future Work 87

11 Conclusion 89

Lebenslauf 97

Eidesstattliche Erklärung 99

Danksagung

Ich möchte Univ.-Prof. Dr. Alexander Egyed M. Sc. und Dr. Roberto Erick

Lopez-Herrejon M. Sc. für die hervorragende Unterstützung und Betreuung

danken die sie mir während der Erstellung dieser Arbeit und auch darüber

hinaus zukommen haben lassen.

Besonderer Dank gilt auch meiner Familie die es mir während meines

Studiums sehr leicht gemacht hat und mich unterstützt hat wo immer es

ging.

iv Danksagung

Kurzfassung

Um in der Lage zu sein die Nachfrage nach maßgeschneiderten Software

Systemen zu decken, verwenden Unternehmen in der Regel Techniken um

Software wiederzuverwenden. Dadurch erhalten die Unternehmen ein Port-

folio von gleichen, doch nicht identischen, Software Produkten. Über Jahre

wurden verschiedene Arten von Techniken zur Wiederverwendung entwick-

elt. Trotz der großen Vorteile die solche Techniken mit sich bringen, haben

sie auch Nachteile, wie hohe kosten oder sie unterstützen die Wiederver-

wendung nicht komplett und haben oft mangelhafte Unterstützung für die

Weiterentwickling von Produkten. Dies führt dazu, dass viele Unternehmen

vor der Verwendung dieser Techniken zurückschrecken. Wir konzentrieren

uns im Wesentlichen auf die Wiederverwendungstechniken Software Pro-

dukt Linien (SPLs) und die weit verbreitete Technik die als Clone-and-Own

bezeichnet wird. Software Produkt Linien sind dafür gedacht die gesamte

Variabilität eines Produktportfolios zu modellieren. Das heißt sie müssen

sorgfältig geplant werden, mit Rücksichtnahme auf alle möglichen Produkte

die ableitbar sein sollen, was eine große Investition bedeutet, die sich viele

Unternehmen nicht leisten können. Clone-and-Own andererseits ist mehr

Ad-hoc. Es wird Code von verschiedenen Produkt Varianten kopiert und

angepasst um den Anforderungen des Kunden zu entsprechen.

In dieser Arbeit stellen wir eine, durch ein Tool unterstützte, Methode vor

welche sich die Vorteile der beider Wiederverwendungstechniken zunutze

macht, jedoch versucht ihre Nachteile zu lindern. Mit unserer Methode se-

lektiert der Entwickler lediglich die gewünschten Eigenschaften (Feature),

vi Kurzfassung

für welche unser Tool automatisch die Software Artefakte findet von de-

nen sie implementiert werden. Das Programm kopiert diese Artefakte an-

schließend in ein neues Produkt und hilft weiters dem Entwickler bei der

manuellen Fertigstellung des Produkts durch Hinweise auf eventuell fehlende

oder noch nicht fertige Codeteile.

Abstract

To keep pace with the increasing demand for custom-tailored software sys-

tems, companies usually use software reuse techniques. Therefore compa-

nies end up with a portfolio of similar, yet not identical, software products.

Over the years different kinds of reuse techniques have emerged. Despite the

great benefits of these techniques, they also have disadvantages, like they

requiring large investments, or do not fully allow to facilitate reuse and of-

ten lack support for evolving products. Therefore many companies are wary

to utilize these reuse techniques. We focus on the reuse techniques using

Software Product Lines (SPLs) and also the wide spread technique referred

to as Clone-and-Own. SPLs are intended to contain the entire variability of

a product portfolio. This means they have to be planned meticulously and

take all the possible product variants derivable into account, which requires

a large upfront investment that companies often cannot afford. Clone-and-

Own on the other hand is a more ad-hoc technique where code of product

variants is copied and modified to fit the customers requirements.

In this thesis we introduce a tool supported approach which leverages

the advantages of these two reuse techniques, yet tries to mitigate their

respective disadvantages. With our approach a software engineer selects the

desired features, for which the tool automatically finds the software artifacts

implementing them. The approach then copies these artifacts into a new

product and helps the software engineer during the manual completion by

hinting which software artifacts may be missing or may need adaption.

viii Abstract

Chapter 1

Introduction

This chapter provides an introduction to Software Reuse techniques, subse-

quently we describe the goal of this thesis and its chapter structure.

1.1 Software Reuse

It has become industrial practice to tailor software to the exact needs of cus-

tomers. Therefore companies develop a portfolio of similar, yet not identical

software products. Because of the high similarity in the products require-

ments, their code is reused in building new software variants. This allows

the companies to develop products faster and therefore cheaper.

The term software reuse can have very different meanings, form the use

of components of the shelf, down the reuse of application architectures [3].

We talk about the direct reuse of implementation artifacts on an arbitrary

level of granularity, from reusing entire packages or classes even down to

reusing single statements.

Next we will discuss the two main approaches for this type of code reuse.

1.1.1 Clone-and-Own

Clone-and-Own is a very cost efficient approach that allows software engi-

neers to tailor software to customer needs [13] [16]. Using Clone-and-Own

2 Introduction

the software engineer first has to build an initial product, potentially already

tailored to a customers requirements. Afterwards the company will try to

get new buyers for their product, which probably have slightly different

requirements. Therefore the software engineer takes the existing product

that is the closest fit to the customers needs and adapts it, with functional-

ity respectively features to fit these new requirements. This adaption may

consist of addition, modification or removal of code. The software engineer

might also take code parts from other products in this product portfolio

which already implement desired features.

Advantages.

• Saves time and reduces costs: It is more efficient to start with

an already existing, tested and validated product, than to start from

scratch. Most of the product is already existing and therefore does

not have to be reimplemented.

• No upfront investment: There is no large upfront investment nec-

essary for Clone-and-Own. Companies start of with a single product

and sell it to their customers, as they would do without reuse.

• Flexibility: Clone-and-Own enables a high flexibility, because the

products are adapted direct to the customers needs. It is not necessary

to foresee all possibly needed product variants. Features can be added,

as they are desired from the customers. Requirements of the product

variant often emerge over time.

Drawbacks.

• Feature maintenance: If a change, for example a bug fix, is made

to a feature, then these changes have to be propagated through all

the products which implement this feature. The software engineers

need to track every product which contains the changed feature and

fix them as well, which also contains finding the features code in the

product.

1.1 Software Reuse 3

• Choosing product variant to start: It is often not clear which

product variant should be used as a starting point. There is usu-

ally no infrastructure that tracks reuse opportunities, so it is mainly

up to the software engineer to remember respectively find parts that

can be reused. Moreover it can be extremely difficult to identify the

implementation of features within the source code of products.

• Lacks systematic methodology: Clone-and-Own is discouraged in

software engineering literature because it lacks a systematic method-

ology. Cloning is often done ad-hoc without planing and facilitating

reuse for the future [12].

1.1.2 Software Product Line Engineering

In software product line engineering the product portfolio is designed com-

plete, rather than building the product variants individually. The desired

features in the product portfolio are therefore developed upfront. This

means the whole range of variability is already contained in the software

product line. Making it possible to configure a new product for a customer

very quick.

A software product line is a set of applications with a common architecture

and shared components, with each application specialized to reflect different

requirements. [3] At the core there is a configurable system which allows to

alter to code to fit the customers requirements.

Advantages.

• Reduce time to market: As soon as a product is needed the

company can derive this product from the product line very quickly.

Therefore a software product line can be a huge advantage for a com-

pany to satisfy their customers and to forestall the competition.

• Reduce costs: In the long run a software product line can reduce

the costs for software, because new products can be generated very

4 Introduction

quick.

• Feature maintenance: Because the features are implemented within

the product line, they only exist once and therefore changes, like a

bug fix, automatically involves all its member products. Nevertheless

it can be complicated to maintain features like this, since changes in

one feature can affect other features too.

Drawbacks.

• Upfront investment: The deign of a software product line is a com-

plex and time consuming task. While the product line is still under

development there are usually no complete products that could be

sold. This implies a risk for the company that a competitor intro-

duces a similar product first, or the market rejects the products and

the investment is lost.

• Variability specified at the beginning: The majority of software

product line engineering approaches assume that the company designs

the complete product portfolio upfront that satisfies all future needs.

This is often not possible, since the company can not foresee future

developments. Therefore the product line has to be evolved, to contain

more or different products, which causes a risky investment again.

• Requires proper techniques and tool support: Software product

line engineering is nothing that can be done ad-hoc. It requires a lot

of planing and know how of the engineers to design a product line in

a proper way. Also tool support is required to allow to implement

and maintain the product line and to generate its member products.

These are reasons why many practitioners hesitate to use software

product line engineering.

1.2 Goals of this Thesis 5

1.2 Goals of this Thesis

The first goal of this thesis is to develop an algorithm to compose product

variants base on their features. This composition takes software fractions,

which are already labeled with the feature they implement, and a set of de-

sired features as input. From this information the algorithm should generate

a product containing exactly these desired features.

With this we want to achieve the same advantages as with the reuse

techniques discussed in the previous section and also minimize respectively

eliminate some of their drawbacks:

• Reduced Costs: The tool will help companies reduce their devel-

opment costs by reducing implantation time and also give them an

advantage by reducing their time-to-market.

• No upfront investment: Companies using this tool will not have

to make a large upfront investment. They just implement their first

products like in clone-and-own and later use the composition to gen-

erate their products.

• Flexibility: Just like with clone-and-own the variability of the prod-

uct portfolio is not specified completely at the beginning. This makes

it easier to include new features in the future, because they will only

be added to the required product variant. Therefore the features can

be implemented for those cases and do not have to take possible con-

straints with not included features into account.

• Feature maintenance: Our tool supports the maintenance of fea-

tures just secondarily. It can help the software engineer to find the

products which implement certain features and also narrow down the

search area for the implementation. In future work this can still be

improved.

• Configuring Products: The implemented tool can configure prod-

6 Introduction

uct variant by selecting the desired features it should have. It allows

to re-compose existing products, which works fully automatic like in

a product line. Also it is able to compose new products with feature

combinations that did not exist before. These new products can then

be used as a starting point for clone-and-own where all the required

implementation of existing products, which eliminates the problem of

finding the code manually.

To achieve this, in a usable manner, we have to tackle some more detailed

subgoals:

• Reference Implementation: Providing a Java implementation of

the composition.

• Genericity: The composition should be generic, so it can be used for

different programming languages and also none-code artifacts (e.g.

models, language, ...).

• References: Dealing with references in the code that cut across the

regular hierarchy.

• Ordering: Calculate possible orderings for implementation artifacts.

• Warnings: Provide meaningful warnings for the software engineer,

to narrow down the code that potentially needs manual adaption.

The second big goal of this thesis is to develop a tool support for the

composition:

• Include extraction: Use the extraction algorithm of [4] to generate

the necessary code fragments from product variants and include it into

the tool.

• Code representation extensible: The tool should be fully exten-

sible in the languages it can use, so it can utilize the genericity the

composition provides.

1.3 Chapter Description 7

• EMF implementation: Provide a reference code representation im-

plementation for EMF (Eclipse Modeling Framework) [5], which itself

already allows a high level of genericity. Also include JaMoPP [6]

(Java Model Parser and Printer) to convert Java code into its EMF

representation.

1.3 Chapter Description

The remainder of this thesis is structured as follows. Chapter 2 introduces

the relevant background by means of an illustrative example. In Chapter 3

we discuss the proposed workflow for the presented tool support. Chapter

4 presents the technical process of the extraction [4] and the composition

along with the used data structures. The tool support is demonstrated

in Chapter 5. Chapter 6 gives an overview of the implementation of the

data structures, the composition and the major tool parts. In Chapter 7 we

show the results of the performed evaluation. Finally Chapter 8 talks about

possible threats to validity. Chapter 9 gives an overview about related work.

Chapter 10 gives an outlook on future work. Chapter 11 summarizes and

concludes the thesis.

8 Introduction

Chapter 2

Background and Example

This chapter introduces the necessary background and illustrates the run-

ning example that will be used throughout the remainder of this thesis.

2.1 Example

Consider a portfolio of drawing applications that has been created by ap-

plying clone-and-own.

Each variant supports a subset of the following features: the ability to

handle a drawing area (BASE), draw lines (LINE) and rectangles (RECT),

select a color to draw with (COLOR) and wipe the drawing area clean (WIPE).

Let us assume that the portfolio consists of three variants, each providing

a distinct set of features and each having its own distinct implementation.

These three product variants and the features they implement are shown in

Table 2.1.

A feature is a functionality of an application visible to the user. Fea-

tures can describe functional and none-functional requirements. We denote

features in upper case.

Each product variant consists of the implementation artifacts and the set

of features implemented by the product. Artifacts can be anything from

source code to models, test cases or requirements.

We use source code as example of the implementation artifacts of the

10 Background and Example

Products BASE LINE RECT COLOR WIPE

Product P1 X X X
Product P2 X X X
Product P3 X X X X

Table 2.1: Initial Drawing Application Product Variants

product variants P1, P2 and P3. Excerpts of their source code are shown

in Figure 2.2. P1 is shown from Lines 1 to 15 and includes a class Canvas

that offers the method wipe, a class Line and a class Main. Next P2 is

displayed from Lines 16 to 28, which also includes the classes Canvas, Line

and Main whose implementation differs slightly from the one of P1, i.e. class

Canvas provides the method setColor instead of method wipe. Moreover,

the constructor of the class Line (see Line 21) receives the additional input

parameter color. Method initContentPane in Line 24 adds an additional

panel to the drawing application to choose colors from. Finally, P3 is shown

from Lines 29 to 46 offering the additional class Rect. As expected, the

three variants’ implementations have commonalities but also differences.

For a better understanding, a screen shot of product P3 can be seen in

Figure 2.1.

The behavior of a single feature may depend on the presence or absence

of other features, i.e. in P2 feature COLOR offers the possibility to choose dif-

ferent colors for lines. In P3 the behavior of this feature changes in the sense

that it now also allows the selection of different colors for rectangles, which

means that the behavior of feature COLOR changes in the presence (resp.

absence) of feature RECT. The fact that features influence each other is re-

ferred to as feature interaction [2] and is a well-known problem in software

reuse.

Next we illustrate the clone-and-own way of extending the product port-

folio by creating a new product P4 with features BASE, LINE, RECT and WIPE,

whose final source code is shown in Figure 2.3. One would probably start

off by copying product P1 and adding the code for feature RECT after its

extraction from product P3. This can be done by identifying the code that

2.1 Example 11

Figure 2.1: Product P3

is only in product P3 and not in P2 as the only difference of features in

these two products is feature RECT. This means that Lines 31, 37-39 and

43 have to be copied into the new product. The resulting product however

will now contain a syntax error since feature RECT has only appeared in

combination with feature COLOR and therefore expects a color parameter in

its constructor (see Line 38 in Figure 2.2). So feature RECT without fea-

ture COLOR behaves differently, therefore this code will have to be manually

removed and replaced with a constructor that does not have color as its

parameter (see Line 59 of Figure 2.3). Additionally the semantics of the

resulting product will also not be entirely correct. Since feature RECT has

never appeared with feature WIPE before, the code responsible for the in-

teraction between these features is missing. Indeed, without this feature

interaction the new variant would fail to wipe rectangles. When wiping the

drawing area clean only the lines will be wiped but not the rectangles (see

Line 4 in Figure 2.2). Again the missing code for this feature interaction

12 Background and Example

will have to be manually added (see Line 52 of Figure 2.3).

Moreover, the software engineer would need to decide on the order of

statements, consider for instance method initContentPane() in Line 62 of

Figure 2.3. While it may be clear that the buttons associated for drawing

lines and rectangles and for wiping the drawing area clean need to be added

to the drawing area it is not clear in which order they shall appear as

the feature interaction among features LINE, RECT and WIPE has not been

present in any products of the product portfolio.

Now consider another product P5 to be created with features BASE, RECT

and WIPE. One could use the previously created product P4 as a starting

point and try to remove feature LINE. In Figure 2.4 we can see the source

code excerpt for product P5, which is now missing the class Line as well as

the lines field in the class Canvas. The problem here is that feature LINE

has never appeared without feature BASE in any product. This makes the

identification of its code harder than simply looking at differences between

products as was done previously for product P4 with feature RECT.

The two newly created products are shown in Table 2.2.

Products BASE LINE RECT COLOR WIPE

Product P4 X X X X
Product P5 X X X

Table 2.2: New Drawing Product Variants

Apart from the challenge of creating new products there is also the task

of maintaining the products currently available. It needs to be ensured

that changes to individual features are propagated across all products that

implement those feature. Imagine for instance a bug fix to be applied to

feature BASE. This fix would have to be carried out in each of the five

variants, because they all implement this feature.

2.2 Modules 13

2.2 Modules

To label the artifacts which implement features or feature interactions we

use modules [14]. With these modules we follow a notation and terminology

inspired by Liu et. al [15].

We distinguish modules of two kinds: base modules and derivative

modules.

• Base Modules A base module labels artifacts that implement a single

feature, i.e. base modules are independent of feature interactions. We

refer to them with the feature’s name in lowercase. For instance the

module line represents all the code that implements feature LINE,

without any interaction with other features that may occur.

• Derivative Modules A derivative module labels artifacts that imple-

ment feature interactions. Meaning code that is responsible for the col-

laboration of two or more features. We denote them as δn(c0, c1, ..., cn),

where ci is F if feature F is selected or ¬F if F is not selected, and n

is the order of the derivative. A derivative module of order n repre-

sents the interaction of n + 1 features. In our example we have seen

such feature interactions for the features RECT and WIPE, where the

software engineer needs to add the Line 52 of Figure 2.3 to product

P4.

Modules can only add artifacts. To model the removal of artifacts when

a feature combination is present we introduce negative features. A product

contains the features it implements positively and those that it does not

implement negatively. A feature not being present can influence the im-

plementations of other features just as much as a feature that is present.

However, a feature that is not present can not add code on its own, there-

fore there are no base modules of negative features. As a simple example

feature LINE has its constructor as shown in Figure 2.2 at Line 8. When

adding feature COLOR that constructor is removed and replaced by a new

14 Background and Example

constructor shown at Line 35. Since the first constructor is not always

present when feature LINE is present it is not part of its base module line,

and if it was then the derivative module δ1(line, color) could not remove

it. So instead the first constructor without the color parameter is part of

module δ1(line,¬color).

2.3 Associations

To be able to express which modules correspond to which artifacts we next

introduce associations. An association maps a set of modules to the arti-

facts implementing the feature and feature interaction represented by these

modules. So an association consist of a set of modules and a number of

artifacts. Alternatively, we say that these modules trace to these artifacts.

Using associations we can map aforementioned modules to the code

of our drawing examples. For instance the base modules line will

be mapped to the code fragments {... List<Line> lines; ...}.

The derivative module δ1(line, color) will be mapped to the ar-

tifacts {... Line(Color c, Point start) ...}, respectively

δ1(line,¬color) is mapped to {...Line(Point start) ...}.

2.3 Associations 15

Product P1 (BASE, LINE, WIPE):

1 class Canvas {

2 List <Line > lines;

3 void wipe() {

4 this.lines.clear();

5 } ...

6 }

7 class Line {

8 Line(Point start) {...} ...

9 }

10 class Main extends JFrame{

11 initContentPane () {

12 toolPanel.add(lineButton);

13 toolPanel.add(wipeButton);

14 } ...

15 }

Product P2 (BASE, LINE, COLOR):

16 class Canvas {

17 List <Line > lines;

18 void setColor(String c){...}...

19 }

20 class Line {

21 Line(Color c, Point start){...} ...

22 }

23 class Main extends JFrame{

24 initContentPane () {

25 toolPanel.add(lineButton);

26 toolPanel.add(colorsPanel);

27 } ...

28 }

Product P3 (BASE, LINE, RECT, COLOR):

29 class Canvas {

30 List <Line > lines;

31 List <Rect > rects;

32 void setColor(String c){...}...

33 }

34 class Line {

35 Line(Color c, Point start){...} ...

36 }

37 class Rect {

38 Rect(Color c, int x, int y){...} ...

39 }

40 class Main extends JFrame{

41 initContentPane () {

42 toolPanel.add(lineButton);

43 toolPanel.add(rectButton);

44 toolPanel.add(colorsPanel);

45 } ...

46 }

Figure 2.2: Source Code Snippets for the initial Drawing Applications

16 Background and Example

Product P4 (BASE, LINE, RECT, WIPE)

47 class Canvas {

48 List <Line > lines;

49 List <Rect > rects;

50 void wipe() {

51 this.lines.clear();

52 this.rects.clear();

53 } ...

54 }

55 class Line {

56 Line(Point start) {...} ...

57 }

58 class Rect {

59 Rect(int x, int y) {...} ...

60 }

61 class Main extends JFrame{

62 initContentPane () {

63 toolPanel.add(lineButton);

64 toolPanel.add(rectButton);

65 toolPanel.add(wipeButton);

66 } ...

67 }

Figure 2.3: Source Code Snippets for Product 4

Product P5 (BASE, RECT, WIPE)

68 class Canvas {

69 List <Rect > rects;

70 void wipe() {

71 this.rects.clear();

72 } ...

73 }

74 class Rect {

75 Rect(int x, int y) {...} ...

76 }

77 class Main extends JFrame{

78 initContentPane () {

79 toolPanel.add(rectButton);

80 toolPanel.add(wipeButton);

81 } ...

82 }

Figure 2.4: Source Code Snippets for Product 5

Chapter 3

Workflow & Principles

This chapter will give an overview of the intended workflow, of the imple-

mented tool support. Further it will illustrate how this workflow is useful

in dealing with the problems introduces in Chapter 2. Finally, the chapter

illustrates what the two active components of the workflow use as input and

provide as output, to present a clear notion of what is performed in these

steps.

3.1 Overview

Figure 3.1 shows an overview of the proposed workflow and highlights the

parts which had to be implemented along this thesis.

The workflow starts with one or more existing product variants. Using

the example we introduced in Chapter 2 our input products would be P1, P2

and P3. These products are parsed (highlighted green in Figure 3.1) into a

generic data structure designed for this approach. The workflow is designed

to be able to replace the parser according to the implementation artifacts

used as input. For this thesis a parser for EMF had to be implemented.

Subsequently the parsed products serve as input for the extraction, im-

plemented by [4]. This will calculate the contained associations, which map

the implementation artifacts to the modules of the product variants. After-

wards these associations are stored in the database (DB).

18 Workflow & Principles

Parse

Print

DB

Extraction

Composition

Product Variants

Composed Variants

Figure 3.1: Overview

The composition was the main challenge of this thesis, therefore high-

lighted red in Figure 3.1. It uses the information from the database as

input and can re-compose those existing input variants again, fully auto-

mated and complete. Moreover it is able to compose new product variants,

with feature combinations that did not exist before. However these new

product variants will have some information missing, like feature interac-

tions of features that never occurred together before. Furthermore it can

miss entire features which have not been implemented yet. Their imple-

mentation has to be provided by the software engineer to complete these

products. To support the software engineer in filling those missing parts the

composition generates warnings to guides the engineer to parts where in-

formation was missing from the database. We distinguish between different

kind of warnings:

3.1 Overview 19

• Missing Artifacts: Modules required for the new product that never

appeared in any of the input product variants, hint to artifacts that

may be missing and whose implementation has to be added manu-

ally. For example this was the case for the module δ1(rect, wipe) in

product P4, since the code for wiping rectangles never occurred before.

• Surplus Artifacts: Modules that where selected in addition to the

modules intended, for the composition of this product. This can hap-

pen if artifacts are mapped to more than one module, because they

could not have been distinguished from the existing input products.

If only one of the modules is needed all the artifacts of the associa-

tion will be used for the composition. Then this warning alerts the

software engineer to take a look at these artifacts to make sure all of

them belong in the new product. In our example this was the case

in the creation of product P5 where it was not clear if the artifact

List<Line> lines belonged to the base module line or base or the

derivative module δ1(line, base) as P5 is the first product where the

features LINE and BASE do not co-occur.

• Order: In some cases not only the structure of artifacts is relevant,

but also the order of artifacts in the same hierarchy. For instance

this is the case in Java for statements within a method, since the or-

der of the code lines can change the semantics of the program and

also make the application uncompilable. Therefore in the cases where

such artifacts are combined from different product variant, i.e. never

occurred together before, the order has to be determined by the soft-

ware engineer. In our example this was the case for the statements of

the method initContentPane() for Product P4 (see Line 62 of Fig-

ure 2.3), where it could not be automatically derived in which order

the buttons need to be added to the content pane.

The software engineer has to decide which of the warnings are important

for the current product, since there can be too many warning for feature

20 Workflow & Principles

interactions that never occurred before and do not actually have an imple-

mentation.

For the task of completing the composed product variants, the software en-

gineer can use the printer (highlighted green in Figure 3.1) of the workflow.

This will create the product with the intended representation of the imple-

mentation artifact (e.g. source code) again. Like the parser, the printer is

fully replaceable and therefore can be individually provided for all different

kinds of implementation artifacts.

After completing the new products, they can be added to the input of the

workflow incrementally, which will further refine the information stored in

the database. Therefore the quality of the newly composed product variants

will improve over time.

3.2 Extraction

The extraction was developed by [4] and used for the purpose of this thesis.

This section will give an overview on the extraction, since it is a key element

to our workflow.

The extraction takes product variants as input which have to be parsed

and converted into the generic data structure presented in Chapter 4. As

output the extraction provides associations (see Section 2.3), which are

stored in the database.

Figure 3.2 illustrates the associations the extraction provides for our ex-

ample input products (P1, P2, P3), every association with the mot significant

modules and the corresponding implementation artifacts. For simplicity we

will use the Java code of our example to illustrate the implementation arti-

facts of the associations.

The implementation parts with gray background are placeholder artifacts,

which are just needed to be able to located their position in the code hier-

archy, and do not actually belong into these associations.

3.3 Composition 21

3.3 Composition

The composition uses the associations stored in the database to construct

them to products again. Therefore the it needs a set of features which the

composed product should contain. Based on these features the composition

selects the associations needed to construct the product variant and merges

the implementation artifacts according to their hierarchy. As discussed

before the so composed products might not be complete and need some

adaption according to warnings the composition provides.

Using our example again, we now want to compose the Product P4 (BASE,

LINE, RECT, WIPE). The composition will select the Associations A1, A2 and

A3 and merge the implementation artifact contained in them. The result

will be an incomplete version of P4 with the unknown lines 52 and 59 of

Figure 2.3 missing and the line 41 in Figure 3.2 surplus.

22 Workflow & Principles

Association A1 (base, line, δ1(line, base)):

1 class Canvas {

2 List <Line > lines;

3 ...

4 }

5 class Line {

6 ...

7 }

8 class Main extends JFrame{

9 initContentPane () {

10 toolPanel.add(lineButton);

11 } ...

12 }

Association A2 (wipe, δ1(line, wipe), δ1(line,¬color), ...):

13 class Canvas {
14 void wipe() {

15 this.lines.clear();

16 }

17 }

18 class Line {
19 Line(Point start) {...}

20 }

21 class Main extends JFrame{

22 initContentPane() {
23 toolPanel.add(wipeButton);

24 }

25 }

Association A3 (color, δ1(line, color), ...):

26 class Canvas {
27 void setColor(String c){...}...

28 }

29 class Line {
30 Line(Color c, Point start){...}

31 }

32 class Main extends JFrame{

33 initContentPane() {
34 toolPanel.add(colorsPanel);

35 }

36 }

Association A4 (rect, δ1(rect, base), δ1(rect, color), ...):

37 class Canvas {
38 List <Rect > rects;

39 }
40 class Rect {

41 Rect(Color c, int x, int y){...}

42 ...

43 }

44 class Main extends JFrame{

45 initContentPane() {
46 toolPanel.add(rectButton);

47 }

48 }

Figure 3.2: Associations extracted from our Drawing Applications

Chapter 4

Technical Realization

This chapter describes the design of the major components (shown in Figure

3.1) in more detail. First the data structures used to represent the imple-

mentation artifacts are described. Subsequently the extraction algorithm is

outlined briefly, to provide an idea on how the database is produced. Fi-

nally the composition algorithm is described in detail, since its design was

a major part of this thesis.

4.1 Data structures

The data structure used for the extraction and composition components is

a very generic tree-structure and not only applicable for a specific program-

ming language, but for arbitrary implementation artifacts. We used it to

represent Java code but it will work as well for other programming lan-

guages, as for other kind of artifacts, like models, test cases, documentation

and so on. An example for the data structure is depicted in Figure 4.1 for

the Product P1. The tree structure for class Canvas is shown in Figure 4.1a.

The class is identified by its name, along with the filed contained in the class.

Methods are identified by their Java method signature and statements sim-

ply are represented by their Java source code. Node Canvas is an unordered

node with the ordered node wipe() as a child. The order of the statements

in method wipe therefore matters. Statement this.lines.clear() refer-

24 Technical Realization

ences the node for field lines, since it accesses it. References are denoted

in dashed lines.

The classes Line and Main are depicted in Figure 4.1b respectively 4.1c.

Canvas

Canvas ∈ P1

wipe() lines

this.lines.clear();

(a) Class Canvas

Line

Line ∈ P1

Line(Point)

Point start

(b) Class Line

Main

Main ∈ P1

initContentPane() toolPanel

toolPanel.add(lineButton); toolPanel.add(wipeButton);

(c) Class Main

Figure 4.1: Data structure for Product P1 [4]

As discussed before, we deal with different kind of implementation arti-

facts. For genericity we defined artifacts with the following content:

• Artifact Object: An arbitrary object representing the artifact (e.g.

a code line in the source code, a EMF-EObject,...).

• Identifier: A string identifying the artifact. This identifier should

represent the artifact as good as possible, since it is used to distinguish

the artifacts later on.

4.1 Data structures 25

• Uses and Used By references: Artifacts can reference other ar-

tifact (e.g. a method call or field access in Java). Therefore each

artifact has a uses property where it can reference other artifacts and

also a used by property which consists of the artifacts referencing this

artifact.

• Containing Node: Artifacts also have a reference to the node in the

tree they are contained (as described in the following in this section).

The tree-structure itself consist of nodes. These nodes hold the imple-

mentation artifacts and moreover consist of the following parts:

• Parent Node: A reference to the parent node in the tree-structure.

• Child Nodes: An arbitrary number of children, as the next hierarchy

level in the structure.

• Ordered or Unordered: Nodes can be ordered or unordered. For

ordered nodes the order of the child nodes is relevant, for unordered

nodes it is not.

• Sequence Number: All nodes initially have a sequence number,

but only the children of ordered nodes get one assigned, serving as an

extension to the identifier and indicating in what position the node

should be in its parent. Therefore also nodes containing similar arti-

facts with similar identifiers can be distinguished.

• Sequence Graph: Ordered nodes also contain a sequence graph,

which contains the information in which order the child nodes ap-

peared in the input product variants.

• Unique or Shared: Moreover each node can either be unique or

shared. This is of importance for the extraction and composition

algorithms and will be described in more detail later on. For products

all nodes are unique.

26 Technical Realization

• Atomic Flag: A flag which gives more information about the struc-

ture. Nodes that are atomic are treated together with their child

nodes as if they only would be one node. This is also important for

the extraction and composition and will be covered in more detail

there.

In Figure 4.1 we can see such nodes in their tree-structure containing

their artifacts as source code fragments. The solid arrows point to the

child nodes, where ordered nodes are depicted with a small square under

them symbolizing the order of their child nodes. Further the dashed arrows

symbolize references between artifacts, as in our example the statements in

these referencing artifacts use the fields int the referenced artifacts.

As mentioned before each ordered node get a sequence graph assigned

by the extraction. Figure 4.2 depicts an example sequence graph for our

example drawing applications. In particular we are concerned about the

order of the buttons in the application.

toolPanel.add(lineButton);

toolPanel.add(wipeButton);

toolPanel.add(rectButton);

toolPanel.add(colorsPanel);

Figure 4.2: Sequence graph derived from Products P1, P2, P3

This sequence graph contains all the information of the or-

der of nodes derivable from the input products. It tells us

that the line toolPanel.add(lineButton); should always come

first. Also the line toolPanel.add(rectButton); always comes be-

fore the line toolPanel.add(colorsPanel);. But the order of

the line toolPanel.add(wipeButton);, toolPanel.add(rectButton);

and toolPanel.add(colorsPanel); could not be determined, so

4.2 Extraction 27

toolPanel.add(wipeButton); can be put before, in the middle or after

the other two lines.

4.2 Extraction

The extraction provides the associations for the database. It was imple-

mented as the thesis of [4] and will be summarized here, since it is a very

important part of understanding this thesis. Artifacts in the associations

are also contained in the data structure described above. In the following

we will provide a short description of the extraction, to make clear how the

data for the composition is generated and what its limitations are. For more

detail on the extraction algorithm please read [4].

4.2.1 Module Calculation

Before the actual extraction can take place, the modules of the product

variants have to be calculated using the list of features contained in the

product. Therefore the list of features contained in the product is combined

with the negated features not contained in the product. From this union

the powerset is calculated. This gives us all the possible modules. However

there are still not valid modules contained in this powerset. First the empty

set has to be excluded. Subsequently all modules which consist only of

negative features have to be excluded, since negative features can not add

any implementation on their own. Negative features only can add artifacts

due to interactions with positive features.

The result of this process is a set of sets of features, respectively a set of

modules.

4.2.2 Intersecting

The first part of the extraction is to intersect the tree-structures parsed

from the variant implementations and the implemented features. Therefore

28 Technical Realization

creating a mapping between the artifacts and the modules calculated from

the features, by mapping commonalities resp. differences in both. Thereby

the modules that are in common can be mapped to the artifacts in common.

And also the modules just in one product can be mapped to the artifacts

that are unique to this product.

P1.Modules

base,line,
δ1(base, line),
wipe,
δ1(line, wipe),
. . .

(a)

P2.Modules

base,line,
δ1(base, line),
color,
δ1(line, color),
. . .

(b)

P1.Modules \ P2.Modules P2.Modules \ P1.Modules

base,
δ1(base,
line),
line

wipe,
δ1(line, wipe),
. . .

color,
δ1(line, color),

. . .

P1.Modules ∩ P2.Modules

(c)

Figure 4.3: Intersecting modules of P1 and P2

Figure 4.3 illustrates the intersection of the modules of our three initial

product variants. Complementary to this Figure 4.4 depicts the intersection

of class Canvas. These intersections are then mapped to each other ac-

cordingly. The modules in P1.Modules\P2.Modules are mapped to the arti-

facts in P1.Artifacts\P2.Artifacts, an modules in P1.Modules∩P2.Modules

are mapped to the artifacts in P1.Artifacts∩P2, and so on. The mapping is

done by putting the modules and their respective implementing artifact into

an association together. Therefore we will end up with a set of associations

giving us the trace information we need to compose the artifacts later on.

Furthermore we can see in Figure 4.4 that class Canvas is in all three

4.2 Extraction 29

Canvas

Canvas ∈ P1

wipe() lines

this.lines.clear();

(a)

Canvas

Canvas ∈ P2

setColor(String) lines

String c

(b)

Canvas

P1.Artifacts \ P2.Artifacts

wipe()

this.lines.clear();

Canvas

P1.Artifacts ∩ P2.Artifacts

lines

Canvas

P2.Artifacts \ P1.Artifacts

setColor(String)

String c

(c)

Figure 4.4: Intersecting code of P1 and P2

associations. However it only traces to the intersection, since both prod-

ucts contain this artifact. Nevertheless we need the node containing

class Canvas as a placeholder, to know the location of its child artifacts.

That is where the distinction between unique and shared nodes comes into

account. In an associations only the unique nodes trace to the respective

modules. The shared nodes are the placeholder nodes, which do not really

trace there but are needed. In Figures 4.4 shared nodes are depicted as

dotted and unique nodes as solid boxes.

Note that if a node was atomic it would be treated as a leaf node, together

with all its child nodes. This means it would only be unique in on association

and not occur in any other association.

As can be seen in Figures 4.3 and 4.4 is that not every modules can be

completely traced to its implementing artifacts. For instance the modules

30 Technical Realization

base and line can not be separated, since they occur in both input products

together. If we would want to separate these modules we would have to

provide a variant which does not implement feature LINE.

In some cases the extraction of artifacts is not that straight forward. For

theses cases the associations also contain another set of modules, for non-

unique traces, so where in the intersection no modules where left to trace to

these artifacts. These modules are calculated as the set of all modules that

where ever associated with the contained artifacts in any product variant,

minus all the modules of the products that do not contain the artifacts.

This is a more coarse mapping, and is only used if the extraction fails to

uniquely trace artifacts.

Furthermore the artifacts stored in the nodes are reused. This means

that the artifact is always the same for equal nodes. In our example all the

nodes for class Canvas contain the same artifact object. Furthermore the

artifacts reference to the node they are contained in, always points to the

unique instance of this node.

The extraction works incremental, so we can add products as we go along.

Therefore the extraction will use the already derived mappings and make

the same intersection with the newly added products, to refine the mapping

and gain more information about the implementation of certain features.

4.2.3 Sequencing

Now we want to discuss the sequencing of our tree-nodes. As illustrated be-

fore the possible orders of nodes (e.g. containing statements) are stored in a

sequence graph, which tell us which ordering of statements are valid accord-

ing to the input products. Therefore all the ordered nodes are sequenced

and a sequence graph is assigned to them.

Figure 4.5 shows an examples of such a sequence graph for the content of

the method initContentPane(). The parts 4.5a, 4.5b and 4.5c show the

code snippet from the initial product variants. Afterwards we show how the

4.2 Extraction 31

sequence graph grows with each product that gets added.

1 toolPanel.add(lineButton);

2 toolPanel.add(wipeButton);

(a) P1

1 toolPanel.add(lineButton);

2 toolPanel.add(colorsPanel);

(b) P2
1 toolPanel.add(lineButton);

2 toolPanel.add(rectButton);

3 toolPanel.add(colorsPanel);

(c) P3

1 : toolPanel.add(lineButton);

2 : toolPanel.add(wipeButton);

(d) Aligned P1

1 : toolPanel.add(lineButton);

2 : toolPanel.add(wipeButton); 3 : toolPanel.add(colorsPanel);

(e) Aligned P2

1 : toolPanel.add(lineButton);

2 : toolPanel.add(wipeButton);

4 : toolPanel.add(rectButton);

3 : toolPanel.add(colorsPanel);

(f) Aligned P3

Figure 4.5: Sequence graph derived from Products P1, P2, P3

In 4.5d only the product P1 was added and we learned from

it that the line toolPanel.add(lineButton); comes before line

toolPanel.add(wipeButton);. Also sequence numbers have been as-

signed to these statements, depicted before the colon in the nodes. Subse-

32 Technical Realization

quently product P2 was added an the sequence graph extended (see 4.5e).

There we learned that toolPanel.add(lineButton); is also before line

toolPanel.add(colorsPanel);. The lines toolPanel.add(wipeButton);

and toolPanel.add(colorsPanel); are parallel because they never

co-occurred in a product and we therefore can not determine

the ordering of these two statements. The newly added line

toolPanel.add(colorsPanel); got the next sequence number (3) as-

signed. As the last product, P3 is added, which tells us that line

toolPanel.add(rectButton); is also after toolPanel.add(lineButton);

but before toolPanel.add(colorsPanel);. This leaves us with

the sequence graph depicted in 4.5f, with the newly added line

toolPanel.add(rectButton); with the next sequence number (4). We

still have no knowledge about where the line toolPanel.add(wipeButton);

goes in the code, other than that it should be somewhere after

toolPanel.add(lineButton);.

4.3 Composition

In this section we will describe how the composition of a product works

using the before extracted associations. This part was implemented for

this thesis and is part of our main contribution. We will discuss how the

artifacts that should be put in the new product are selected, how they are

restructured, including the resolving of references and also how the order

of the artifacts is determined. Also there are some further configuration

options to the composition we will discuss in this section.

Figure 4.6 shows an overview of the steps that will be described in detail

in this section.

4.3.1 Selecting Code

In the first step of the composition the associations which are of relevance

for the desired product have to be selected. Therefore the composition

4.3 Composition 33

Select

Associtations

Merge Tree

Structures

Resolve

References

Order

Artifacts

Figure 4.6: Composition Steps

needs a set of features as input, to specify which product variant should be

composed. For example we want to compose product P4 of our example after

extracting all the trace information from P1, P2 and P3 from our drawing

applications portfolio. This means the composition will get the features

BASE, LINE, RECT and WIPE as an input.

From these features the modules have to be calculated, using again the

algorithm outlined in Section 4.2.1. Through the application of this algo-

rithm we get the desired modules that we need to completely compose the

product. Figure 4.7 depicts these desired modules for P4.

P4.Modules

base,line,rect,wipe,
δ1(line, base)
δ1(line, wipe),
δ1(rect, wipe),
δ1(rect,¬color)
. . .

Figure 4.7: Desired modules for composing P4

The selection is now done by intersecting these desired modules with the

modules of every association separately. In the default settings the compo-

sition will select every association where the intersection of the modules is

not empty, i.e. the association has at least one module that is needed to

compose P4. However this is in some cases not the ideal way of selecting

artifacts for the product. Therefore the composition can be configured to

refine this selection for different cases. The first configuration allows the

34 Technical Realization

software engineer to assign a limit to the order of the modules, therefore

only modules below this configured order are intersected. Secondly a per-

centage of the intersection can be configured, which will set a minimum

overlap for the modules in the intersection in ratio to all the modules in the

association. Therefore an association will only be selected if its modules are,

to this percentage, needed to compose the product. This can help to rule

out cases where a whole association, with maybe hundreds of modules, is

selected just because one of its modules is needed, which can lead to errors.

As we have discussed earlier the associations also contain a second set

of modules, in case the extraction could not find a unique trace for the

contained artifacts. Is this the case then these associations are selected

according to the same criteria as the others. Further the composition can be

configured to use these non-unique traces in this case (as is set by default),

or just to ignore associations that could not be traced precisely.

Figure 4.8 depicts the associations that are selected for the composition

of product P4. On the left hand side are the modules of the associations

and their respective nodes of class Canvas on the right next to them.

If all of the before mentioned configurations still are not sufficient to select

the desired associations, the composition also offers an interface for manual

refinement of the selection. More on that in the tool description in chapter

5.

Furthermore while the selection is done, all the modules of the selected

association are stored in a single set, as depicted in Figure 4.9.

Based on this set of selected modules (SelectedModules), the composition

calculates warnings about modules that are missing and also modules that

are surplus to the ones we needed for composing the product (see Figure

4.10).

• Missing Modules: These are all the modules that are not contained

in any of the selected associations (in the default configuration not

contained in any association), hinting to artifacts that might be miss-

4.3 Composition 35

base,line,
δ1(line, base)

Canvas

lines

(a) Association A1

wipe,
δ1(line, wipe),
. . .

Canvas

wipe()

this.lines.clear();

(b) Association A2

rect,
δ1(rect, color)
. . .

Canvas

rects

(c) Association A4

Figure 4.8: Selected Associations for composing P4

SelectedModules

base,line,rect,wipe,
δ1(line, base)
δ1(line, wipe),
δ1(rect, color)
. . .

Figure 4.9: Modules of the selected associations

ing. In our example it is calculated by P4.Modules \ SelectedModules.

• Surplus Modules: These are modules that where contained in the

selected associations, and therefore stored in the SelectedModules set,

36 Technical Realization

but are not needed to compose the product. Therefore there might be

artifacts in the selection that are not needed for the desired product,

yet can not be filtered out. In our example theses are the modules in

SelectedModules \ P4.Modules.

Missing Modules Surplus Modules

base,line,
rect,wipe,

δ1(line, base)
δ1(line, wipe),

. . .

δ1(rect, wipe),
δ1(rect,¬color),
. . .

δ1(rect, color),
. . .

Figure 4.10: Calculating Missing & Surplus Modules

4.3.2 Tree Merging

Now the artifacts of the before selected associations are composed to a

product. This is done by incrementally growing the new tree.

In particular the algorithm iterates over the selected associations and takes

the contained tree-fragments. Each of theses tree-fragments are traversed

and the nodes copied into a new structure, that is stored in the new product.

Therefore the nodes in the associations remain unchanged. Moreover while

traversing the trees the algorithm checks if the current subtree already was

added to the products nodes and only copies the parts that are new to

the product. Figure 4.11 illustrates how the tree-structure is restructured

incrementally. On the left hand side the nodes of the association are shown

and to the right the nodes of product P4 after adding these nodes. Note

that the order in which the tree-fragments are added does not matter.

Further the algorithm remembers which of the inserted nodes where unique

once and which nodes only occurred as shared in the selected associations.

4.3 Composition 37

Canvas

A1

lines

Canvas

P4

lines

(a) Adding association A1

Canvas

A2

wipe()

this.lines.clear();

Canvas

P4

wipe() lines

this.lines.clear();

(b) Adding association A2

Canvas

A4

rects

Canvas

P4

wipe() lines rects

this.lines.clear();

(c) Adding association A4

Figure 4.11: Merging Trees for composing P4

Therefore it can issue warnings to tell the software engineer about place-

holder nodes that had to be added to compose the product.

4.3.3 References

After the nodes are merged into the complete tree-structure again, the com-

position checks if all the used artifacts (i.e. referenced artifacts) are also

contained in the new tree.

Therefore the algorithm traverses the composed tree-structure an checks

38 Technical Realization

the contained artifacts for used references. If an artifact uses another ar-

tifact, the algorithm checks if this artifact is also contained in the tree, by

traversing it again. Is the referenced artifact contained then nothing is to

do. However if the referenced artifact can not be found in the composed

product, the software engineer has to decide on what to do with this refer-

ence. It can be chosen from the following options:

• Leave reference unresolved: As default option the composition

simply lets the unresolved reference stay in the code. This will raise a

syntax-error in the product variant, which however can be useful as it

marks a place in the source code where manual changes are required.

• Remove referencing artifact: Remove the node which holds the

artifact that references the none-existent artifact (e.g. variable, field

or method). If the reference is below an atomic node, then the atomic

parent node is removed.

• Add referenced artifact: Add the node which holds the referenced

artifact to the tree. Respectively its atomic parent node, if existent.

Also the unique children of the referenced node have to be included,

since they are important in most cases (e.g. type of a field). This

will trigger another search for references if the added artifacts again

reference other artifacts.

• Add referenced association: Add all the nodes of the association

which holds the referenced artifact. Again all the contained artifacts

have to be checked for references, which then can lead to more deci-

sions that have to be made.

Figure 4.12 depicts the nodes from class Canvas of the composed product

P4 after resolving the references.

4.3 Composition 39

Canvas

P4

wipe() lines rects

this.lines.clear();

Figure 4.12: Resolved references in product P4

4.3.4 Code Order

Until now the composition only restructured the nodes into a complete tree-

structure, but did not consider the order in which the nodes should be put

together. So as the last step of composing a product, the algorithm checks

the order of the nodes in the tree.

The algorithm checks the sequence graph of every ordered node for possible

orderings of its child nodes. Therefore it can determine all valid orders for

these nodes. Is there only one possible order then the composition will

put the child node in this exact order. If there are more than one orders

contained in the sequence graph, the software engineer is notified and asked

to select an order for the nodes.

Moreover it can be configured, if the order is not of great importance in

composing a certain product, and therefore do not ask the software engineer

for a decision but automatically chose the first valid order that conforms to

the sequence graph. Also the composition allows to configure a threshold

for the number of possible orders that should be generated. It will then

limit the orderings from which the software engineer can chose.

From the sequence graph depicted in Figure 4.5 the algorithm can derive

the two orders shown in Figure 4.13 for composing the product P4.

40 Technical Realization

1 toolPanel.add(lineButton);

2 toolPanel.add(wipeButton);

3 toolPanel.add(rectButton);

1 toolPanel.add(lineButton);

2 toolPanel.add(rectButton);

3 toolPanel.add(wipeButton);

Figure 4.13: Possible orders of Buttons in P4

Chapter 5

Tool Support

This chapter illustrates the tool support for the implemented workflow cycle.

We will show an overview of the most important parts of the tool by means

of a step by step demo scenario, that illustrates how the tool is intended to

be used. Subsequently we will go into more detail of some parts that did

not surface in the demo scenario.

The tool is implemented as a plug-in for the eclipse IDE (integrated de-

velopment environment). Eclipse is one of the most used development en-

vironments and provides a good extendibility through plug-ins.

5.1 Demo Scenario

For this scenario we will use our illustrative example with the three drawing

applications as input for the cycle.

Note that the tool includes a perspective in eclipse, which contains the

needed views for working with the tool. It can be selected in Window -

Open Perspective - Other - Composition.

At first the engineer has to create a new project in eclipse (File - New -

Project - Composition - Composition Project), as shown in Figure 5.1.

By clicking on Next the name and location of the project has to be defined

(see Figure 5.2). We used the name ”Draw” for our drawing applications

example.

42 Tool Support

Figure 5.1: Create new Project

Figure 5.2: Define Name and Location

Subsequently Figure 5.3 shows the selection of a folder that holds the

input product variants. Note that there is a convention on the format of

5.1 Demo Scenario 43

product variants to import them into the project like this. They have to be

folders named with the variants name, containing a text file ”features.txt”

containing the list of features implemented and a folder ”src” which contains

the implementation (e.g. source code files).

Figure 5.3: Select input Product Variants

The tool is extensible for the implementation artifacts it can work with.

Moreover it is possible to define different ways the tool should handle the

same artifacts in form of representation. Therefore if for an implementation

there exist more than one way to interpret it, the tool will ask, once per

project, how to handle these files, like in Figure 5.4 for Java files. They can

be translated to EMF, using JaMOPP [6], and then handled as EMFArti-

facts, or they can be directly parser by a Java parser that will generate our

data structure with the code lines as strings (see Section 6.3). We will use

EMF for our example.

The tool will now parse the products and display them in the navigator

view on the left side of eclipse. As shown in Figure 5.5.

The parsed product variants are then inserted into the database where the

44 Tool Support

Figure 5.4: Choose a Representation for Java files

Figure 5.5: Parsed Product Variants

trace extraction is triggered. The resulting associations can also be viewed

with the tool (Figure 5.6), where the software engineer can see the features

contained in an association, the modules and of course the implementation

artifacts. This view is opened by Right Click on Product-Variations - Open

or by Double Click on Product-Variations. This view also includes an outline

and properties view, which give more information about the location and

characteristics of individual artifacts. The outline view also provides the

option to switch to a more intuitive code view, which replaces the labels

in the tree with the actual code line, as long as this is implemented for

the used representation. Note also that only the artifacts that trace to an

5.1 Demo Scenario 45

association are displayed there, placeholder nodes are concealed, to avoid

confusion.

Figure 5.6: Database View

On the bottom the user can select a tab. By switching to the Compose-

tab the form for composing a product appears. In this form a name for the

desired product has to be entered, along with a selection of features which

it should implement (see Figure 5.7).

By clicking on the Compose-button the composition gets initiated. Dif-

ferent kinds of warnings are generated, to support the software engineer,

and viewed in the tool. The first warnings generated are usually addressing

missing resp. surplus modules.

In Figure 5.8 we can see the warning for missing modules, that where not

in the database. There it shows that the derivative modules that implement

the feature interaction for δ1(rect, wipe) and δ1(rect,¬color) are missing,

which will probably affect our composed product.

Figure 5.9 on the other hand depicts the warning for surplus modules,

that could not have been filtered out. For instance we have the module

46 Tool Support

Figure 5.7: Compose Product P4

Figure 5.8: Missing Modules

5.1 Demo Scenario 47

δ1(rect, color) in the product, which we do not want, since the feature

COLOR is not selected. When selecting one of these surplus modules the

tool will display the artifacts contained in the respective association in the

outline view, so the software engineer can directly check if there is code

included that is not desired in the composed product.

Figure 5.9: Surplus Modules

For the use references which targets could not have been found in the

composed product a dialog will pop up and ask the software engineer to

decide what should be done with this reference (see Figure 5.10). Moreover

the dialog includes a check-box, which will store the decision made and

automatically make the same decision for every unresolved reference in this

composition. We choose to ignore theses unresolved references for now.

This will later lead to compilation error in the code. However these errors

mark the spots where manual adaption of the variants code is required.

As discusses in earlier chapters the composition checks if there are different

valid orders in which artifacts can appear. If there exists more than one

valid order the tool will ask the software engineer which one should be used

48 Tool Support

Figure 5.10: Resolve Use References

in the resulting product. In Figure 5.11 we can see this order warning, again

on the example regarding the order of the buttons, that we used before to

illustrate the order problem. Like in the outline view we also can switch to

a code view, by selecting the check-box named Code View. For selecting an

order the software engineer can either press Skip, which will simply order the

artifacts according to the first option. Or he can select one of the options,

by clicking on one of the artifacts of the option, and the press Apply. The

tool will then order these artifact according to the selected, displayed with

a gray background, order. Should the desired order for these artifacts not

be contained in the options, then the engineer can determine his own order

by simple drag and drop, and select this as the order the artifact should be

put in the composed product. Furthermore the user can press the button

Later, which will reschedule this order warning, so the software engineer

can address other order issues first.

5.1 Demo Scenario 49

Figure 5.11: Choose Order of Statements

After all these choices have been made and the composition is complete the

composed product will appear in the folder ”Composed-Products” (Figure

5.12).

Figure 5.12: Composed Product P4

However as the warning seen above suggest the product variant is not

50 Tool Support

finished yet. There is still code missing resp. surplus that could not have

been derived from the information in the database. Therefore the software

engineer needs to manually complete the new product. Nevertheless the

tool also supports the user fixing those issues. Through Right Click on

the new Product - Move to independent Project the tool will create a new

eclipse project, containing the code of the product. Therefore the software

engineer can use the editing capabilities of eclipse to complete the product

in a manner he is used to.

Note to change the perspective in eclipse, so the new projects are dis-

played. As we open this project, we can see that there are compilation errors

in the code (see Figure 5.13). These errors are relating to the warning the

composition triggered before. In particular this error was introduced by the

decision to ignore the unresolved reference, during composition. Further-

more the composition triggered a warning that the module δ1(rect, color)

could not have been filtered out and the module δ1(rect,¬color) was en-

tirely missing in the database. These warnings are also related to this error.

Therefore we have to manually fix this, like discussed in chapter 2.

Additionally to compilation errors also semantical errors can occur, like

if there is code missing. In our case the composition informed us that

the module δ1(rect, wipe) was missing for P4. This means that there is

probably code missing for the feature interaction responsible to wipe the

rectangles from the drawing area. Indeed when we start the application

and used the wipe functionality, only the lines are cleared from the drawing

area and the rectangles remain unchanged. Consequently we will have to

fix this too. The tool offers support in this case, by helping the software

engineer in finding where the involved features are implemented. As shown

in Figure 5.14 we can find the associations which contain implementations

of the desired feature to locate the responsible code parts. In our case the

implementation of Feature WIPE is contained in a single association. We can

find a method wipe() in there and also can see in the outline view that this

method is located in class Canvas. After making some small adjustments

5.1 Demo Scenario 51

Figure 5.13: Java Project for Product P4

to this method, also the rectangles get cleared when wiping the drawing

area. This mean the product variant is complete.

Now the next step is to parse these changes back into our data structure.

Therefore the user switches back to the composition perspective, Right Click

on P4 - Update Code and the code changes are applied to the product variant

there.

Finally the now complete product is added to the input products, by Right

Click on P4 - Move to Product-Variations. This will update the database,

which will get refined with the information gained by this new product.

Therefore the knowledge on how to handle certain feature interactions and

the code implementing them is now available and the same problems will

not have to be fixed again. For instance the module δ1(rect, wipe) is now in

the database and therefore this interaction can be automatically composed

in the future.

52 Tool Support

Figure 5.14: Locate Feature WIPE in the Code

5.2 Other Capabilities

In this section we will show tool parts that are important for the usage

of the tool, yet where not covered in the intended workflow described in

section 5.1.

Product variants can also be added after the project was created. By Right

Click on Product-Variations - New - Product-Variation a dialog window

opens, which lets the software engineer select a product to add (see Figure

5.15). It is either possible to specify the path to a product folder, that

fits the conventions mentioned before, which will automatically display the

products information in the dialog. Alternatively the software engineer can

specify the product information, name, location of the implementation (e.g.

code) and the implemented features manually.

Like shown in Figure 5.6 the associations contained in the database can

be presented by the tool. Moreover also the product variants can be dis-

played. Both the features a product implements (see Figure 5.16) and the

5.2 Other Capabilities 53

Figure 5.15: Add a Product Variant

implementation artifacts of the product (see Figure 5.17) can be viewed.

Features are presented in a table with their name and description. The

implementation artifacts are displayed in their tree-structure.

As discussed in earlier chapters, it is possible to configure the composition.

This is also supported by the tool. Right Click on the Project - Properties -

Composition Properties will present the configuration abilities of the tool,

as shown in Figure 5.18.

The first configuring capability allows to limit the order of modules that

are displayed by the tool. Therefore higher order modules that most likely

have no implementation can be hidden and the displayed information is

more clear. The value zero means there is no limit.

Secondly the maximal order of modules for selecting the associations can

54 Tool Support

Figure 5.16: Features implemented in a Product Variant

Figure 5.17: Implementation Artifacts of a Product Variant

5.2 Other Capabilities 55

Figure 5.18: Configuring the Tool

be specified. Therefore no higher order modules are considered for the

selection of an association. Again zero means there is no maximum.

Next the minimum percentage of modules needed in an association can be

configured. This value can be from zero to 100, whereas zero means every

association will be selected that has at least one required module. On the

other extreme 100 means each of the modules in the association has to be

required for composing a product, which is probably a to strict restriction

in most cases. Nevertheless a value between these two extrema can be quite

useful.

The first of the two boolean values specifies if the composition should take

non-unique traces into account, if an association has no unique modules.

It can also be specified if the software engineer wants to see which asso-

ciations have been selected and manually tweak this selection.

With the last value the user can control the maximal number of orders

that are generated during composition. If the software engineer does not

want to make any order decisions then he or she can set this value to one.

Only one valid order will be determined and selected. Note this is not

implicitly the correct order for these nodes in this case.

56 Tool Support

For the manual refinement of the selected associations there also exists a

dialog window (see Figure 5.19). The composition will automatically select

the associations as usual, and then lets the user refine the selection.

Figure 5.19: Manual select Associations

Chapter 6

Implementation

This chapter provides insight in the implementation of this thesis. First we

outline the implementation of the data structures used and the composition.

Subsequently we will provide an overview of the major implementation parts

of the tool support for our approach. And finally we will discuss the parsing

and printing of EMF.

6.1 Data structure and Core Operations

This section will illustrate the implementation of the core parts of the ap-

proach.

6.1.1 Features and Modules

Figure 6.1 shows the implementation of features and modules. Features

are identified by their name, which is a simple Java String, that is used

in the methods equals and hashCode. A NegativeFeature extends the

class Feature. FeatureSet and Module are simply sets of features. They

extend the class HashSet from the Java class library, with the generic type

Feature. Therefore the there implemented set operations can be used for

checking if features are contained resp. comparing two modules.

Moreover we can see in Figure 6.1 the Database as the core. It provides an

58 Implementation

interface for adding products and triggers the intersection for these products

base on already calculated associations. Therefore the contained associa-

tions get updated with every product added to the database.

Database
+associations: List<Association>
+features: FeatureSet

+addProduct(Product)

Association
+root: RootNode

+getModules(): ModuleSet
+getMaxModules(): ModuleSet

FeatureSet

Set<Feature>

Feature
+name: String
+description: String

+equals(Object): boolean
+hashCode(): int

NegativeFeature

Module

+order(): int

Set<Module>

ModuleSet

+featuresToModules(pos:FeatureSet,neg:FeatureSet): ModuleSet

1

4

1

1

1

*

* 1

1 *

Figure 6.1: UML Class Diagram for Database, Association, Module and
Feature

6.1.2 Nodes and Artifacts

The implementations of Artifact and Node are shown in Figure 6.2. The

abstract base class Artifact provides the general content and interface for

every artifact. We implemented three concrete kinds of artifacts:

• EMFArtifact for EMF source implementation. This artifact holds

an EMF EObject which can represent anything from source code to

different kinds of models, etc.

• EMFFieldArtifact for preserving the structure of EMF sources. This

artifact is used to separate children to the different fields they occur in

EMF, which is important to be able to reconstruct the EMF sources

again from our data structure.

6.1 Data structure and Core Operations 59

• JavaStringArtifact represents Java source code as a Java string

(e.g. statement, method signature, ...).

Class Node contains the general data structures. It is also an abstract

base class for three concrete kinds of nodes:

• RootNode is used for associations. It is the root of the tree struc-

ture and combines all the other nodes into a single root node. The

RootNode itself does not contain any implementation artifacts.

• UnorderedNode is a simple implementation of Node without any spe-

cial functionality.

• OrderedNode overwrites some methods of class Node, which are rel-

evant for the extraction. Moreover an OrderedNode contains a

SequenceGraph, since only there the order of their children matters.

Note that all matching OrderedNode (i.e. same sequence number, artifact

and position in the tree-structure) have the same instance of SequenceGraph.

Also the extraction ensures that only one of these matching nodes is unique

(also for UnorderedNode). Moreover the artifacts always point to the unique

node as the containing node. Furthermore the references between the arti-

facts are resolved correctly during the intersection.

6.1.3 Composition

Figure 6.3 depicts the class Composer, which implements the composition

of a new product respectively the recomposition of a known product vari-

ant. It includes the selection of required associations and calculating the

corresponding warnings, the merging of the tree-structure, the resolving of

references and the deriving of possible orders of nodes where the order mat-

ters. As can be seen in Figure 6.3 the Composer works with a Database

where all the relevant informations are stored. The most important method

in the interface of class Composer is compose(String,FeatureSet) which

60 Implementation

Artifact
+identifier: String
+type: String
+object: Object

+getParent(): Artifact
+getUses(): List<Artifact>
+getUsedBy(): List<Artifact>
+getContainingNode(): Node
+equals(Object): boolean
+hashCode(): int

Node
+artifact: Artifact
+sequenceNumber: int

+isUnique(): boolean
+isAtomic(): boolean
+intersect(Node): Node
+getChildren(): Set<Node>
+addChild(Node)
+getParent(): Node
+equals(Object): boolean
+hashCode(): int

JavaStringArtifact

EMFFieldArtifact

EMFArtifact

RootNode

UnorderedNode

Product
+name: String

+getFeatures(): FeatureSet
+getNodes(): HashSet<Node>

OrderedNode

+getSequenceGraph(): sequenceGraph

SequenceGraph

+sequence(OrderedNode)

1

*

*

1

*

1

*1

Figure 6.2: UML Class Diagram for Product, Artifact and Node

returns a product with the given string as name and containing the imple-

mentation artifacts for the features in the second argument. Furthermore

the class also contains a method compose(Collection<Node>) which merg-

ers the trees together and returns a list of the rejoined root nodes. This

allows to use the composition ability even for nodes which are not associated

to any modules.

The configuration of the composition (as described in Chapter 4) is also

accessible through this interface. There are methods that set boolean flags

6.1 Data structure and Core Operations 61

for activating respectively deactivating some behaviors. And also there are

different integer values that can be set to fine tune the behavior of the

Composer.

Furthermore the Composer offers an interface for registering different kinds

of listeners, so that using programs get the corresponding events while com-

position.

Composer
+database: Database

+compose(String,FeatrueSet): Product
+selectAssociations(FeatureSet): List<Association>
+compose(Collection<Node>): List<Node>
+compose(Collection<Node>,List<OrderEvent>): List<Node>
+getOrders(SequenceGraph,List<Node>): List<List<Node>>
+getOrders(SequenceGraph,List<Node>,int): List<List<Node>>
+setManualSelectAssocaitons(boolean)(boolean)
+setMaxOrderModules(int)
+setMinOverlap(int)
+considerAllModules(boolean)
+setOrderThreshhold(int)
+addMsgListener(MsgListener)
+addAssociationsSelectedListener(AssociationsSelectedListener)
+addOrderListener(OrderListener)
+addResolveListener(ResolveCrossRefListener)

Figure 6.3: UML Class Diagram for Composer

6.1.4 Ordering

As discussed before, the valid orders of artifacts (e.g. statements) are stored

in the SequenceGraph. Yet the SequenceGraph is implemented differently

from the one illustrated before. We used a partial order relation to describe

the order problem, since it is easier to show of the problems with this

structure. However in the implementation we found it more suitable to go a

different route. Figure 6.4 depicts the sequence graph as it was implemented.

Due to spacing issues the statements have been replace according to the

legend at the top right corner. The circles are the graph nodes and only

serve to provide the structure of the graph. Nodes, with their containing

artifacts, are in the transitions between the graph nodes.

62 Implementation

1: c1

2: c3 4: c2

4: c2

2: c3 3: c4

3: c4 2: c3

c1 := toolPanel.add(lineButton);
c2 := toolPanel.add(rectButton);
c3 := toolPanel.add(wipeButton);
c4 := toolPanel.add(colorsPanel);

Figure 6.4: Sequence Graph as Implemented

Not only is it easier to align artifacts in this structure, but also the pos-

sible orders can easily be found by simply traversing the graph. As can be

seen in Figure 6.4, every path through the graph represents a possible order

of statements. Therefore the composition can generate all the possible or-

ders by traversing the SequenceGraph and remember the orders along the

way. However not every node that will be passed in the SequenceGraph

also has to be in the composed product. For example when composing P4,

we do not want to include the statement that provides the color selection

(toolPanel.add(colorsPanel);). Therefore the algorithm has to skip this

node and continue with the next graph node after this skipped transition.

Alternate Implementation

In an earlier stage of the implementation the extraction did not provide

a sequence graph yet. Therefore the artifact order was calculated a little

different. There the composition had to look up the different orders that

existed in the input product variants.

First the algorithm makes a mapping of which nodes are before other

nodes. It distinguishes two mappings there, the first one are nodes that

are sometimes before another node and the other ones a nodes that are

always before another node, which could indicate a dependency between

these nodes. Based on these mappings the algorithm combines the orders

of nodes from the input products to the possible orders which contain all

6.1 Data structure and Core Operations 63

artifacts that occurred in the input sequences somewhere.

1 List <List <Node >> combineOrders(List <List <Node >> orders){

2 Map <Node , List <Node >> before = findBefores(orders);

3 Map <Node , List <Node >> alwaysBefore = findAlwaysBefores(

orders);

4

5 for(0 <= i < orders.size()){

6 List <String > combined = new ArrayList <String >();

7 for(0 <= j < orders.size()){

8 List <Node > order = orders.get((i+j)%orders.size());

9 for(Node n : order){

10 insertOrder(combined , n, before , alwaysBefore);

11 }

12 }

13 if(! combinedOrders.contains(combined)){

14 combinedOrders.add(combined);

15 }

16 }

17

18 return combinedOrders;

19 }

Figure 6.5: Alternative Implementation to generate Orders

Figure 6.5 illustrates the algorithm used to find valid orders that contain

all artifacts, out of the input orders. The method findBefores generates

the mapping of nodes that are before a specific other node in at least one

product. Further the method findAlwaysBefores generates the more pre-

cise mapping of nodes that occur before an other node in all input products,

both nodes are in. The method insertOrder combines these orders based

on these mappings, ensuring that the orders according to the alwaysBefore

mapping are adhered to. Further the mapping before is also used to find

possible orders. Yet this mapping can have some contradictions and there-

fore multiple orders might be valid, respectively it can be found that some

artifacts do not depend on each other at all and therefore can be put to-

gether in any order.

64 Implementation

6.2 Tool

In this section we will outline the major implementation parts of the tools

logic.

6.2.1 Project

In Figure 6.6 we can see the most important interface parts of the

CompositionProject which is the core of the tool support. All the es-

sential parts are started in an instance of this class. Furthermore Figure 6.6

shows the six different worker-threads the CompositionProject manages.

They are responsible for carrying out the more time consuming parts of our

workflow, that would otherwise block the user interface of the tool. More-

over these threads can run concurrently. In particular the thread classes

are:

• ProductParsingThread is responsible for parsing the artifacts for the

different products. Products can consist of different kinds of arti-

facts, as long as there is a representation registered in the tool which

supports theses artifacts.

• SerializationThread saves the products, the database and other

valuable project data. Therefore the products do only have to be

parsed once and are stored in the used data structure afterwards.

Also the database does only have to be generated once.

• DeSerializationThread reversed the process of the

SerializationThread. So it loads the products, database and

other information again at program start or as soon as they are

actually needed. Products are only loaded when they are viewed,

therefore they do not use up so much main memory.

• ExtractionThread inserts new products into the database. Every

time a new product variant is added to the input products this thread

6.2 Tool 65

updates the database and initiates an event when the database has

changed. Moreover if an input product is deleted it has to regenerate

the database with the remaining products, since a delete function in

the database is not accounted for.

• CompositionThread is triggered when a composition is executed form

the software engineer. It generates a Composer object with the current

database and starts the composition with the desired feature combi-

nation as parameter. Furthermore it manages the correct desired con-

figuration of the Composer object and ensures the registration of all

required listeners.

• ProductExportThread is responsible for storing the products artifacts

in their initial form, if supported, in a src folder. Furthermore it stores

the products features as a list in a features.txt file, to conform to the

tools convention and can easily be parsed again.

CompositionProject
+project: IProject
+name: String
+projectDir: File
+productsDir: File
+composedDir: File
+tempFolder: File
+database: Database
+representationsMap: Map<String, Representation>
+products: Map<Product, Set<String>>
+composedProducts: Map<Product, Set<String>>

ProductParsingThread

+addProduct(String,FeatureSet,File,boolean)

SerializationThread

+addProduct(Product)
+addComposedProduct(Product)

DeSerializationThread

+loadProductVariation(Product)
+loadComposedProduct(Product)

ExtractionThread

+productChanged(Product)
+productRemoved(Product)

CompositionThread

+newComposition(String,FeatureSet)
ProductExportThread

+productForExport(Product,File,boolean)

1

1

1

1

1
1

1

1

1

1

1

1

Figure 6.6: UML Class Diagram for CompositionProject and its Workload
Threads

66 Implementation

6.2.2 Representation

Figure 6.7 depicts the implementation of representations in the tool. Rep-

resentations allow programmers to extend the tool with different languages

and formats for input artifacts.

RepresentationLibrary
+representations: Map<Class, Representation>

+getRepresentations(String): Collection<Representation>

Representation
+name: String

+supportedSourceTypes(): Collection<String>
+supportedSourceTypesByConversion(): Collection<String>
+canConvertSouce(String): boolean
+artifactTypes(): Collection<Class>
+getParser(CompositionProject): ArtifactParser
+getConversions(): Collection<Conversion>
+getExportConversions(): Collection<ExportConversion>
+getConversion(String): Conversion
+getExportConversion(String): ExportConversion
+getContentProvider(): NodeContentProvider
+getLabelProvider(): NodeLabelProvider
+getNodeProperties(): NodeProperties
+hasSecondTextView(): boolean
+serialize(CompositionProject)
+deserialize(CompositionProject)
+deserializedNodes(CompositionProject,Collection<Node>)
+getProjectSupport(String): ProjectSupport
+isExportable(): boolean
+exportCode(Product,String,boolean,CompositionProject)

EMFRepresentation
+library: Map<String, EMFLanguage>

EMFLanguage
+metaModel: EMetaModel

Conversion
+fromFileType: String
+toFileType: String

+getParser(CompositionProject): ArtifactParser

ExportConversion
+fromFileType: String
+toFileType: String

+export(Product,File,CompositionProject)

JavaToEMFConversion

EMFToJavaConversion

1

*

1

1

*

*

1

1

1

1

1

*

Figure 6.7: UML Class Diagram for Artifact-Representations

In the top left corner of Figure 6.7 the class RepresentationLibrary is

shown, where all representations have to be registered to, by inserting them

into the map representations with their used Artifact class as a key.

Note that a Representation can have more than one different artifacts,

but an Artifact class can only be used for one Representation.

The abstract class Representation provides interfaces for parsing, print-

ing (export), serializing, de-serializing artifacts of this representation, along

with many other useful functionality. In our case we implemented the con-

crete class EMFRepresentation for supporting EMF artifacts. EMF can

again represent all kinds of different languages, models, and other imple-

mentation artifacts. This means the tool can support basically all lan-

guages EMF supports. As also can be seen in Figure 6.7 there is a class

EMFLanguage which holds a meta model for an EMF based language the

6.3 Parsers 67

tool can support. This meta model provides structural information of the

artifacts, along with the information which parts are important for defining

an identifier for a certain artifact.

Moreover the representations can support conversions, which allow an

implementer to further extend the capabilities of a representation. The

abstract class Conversion allows to provide a separate parser for different

input sources, that are not available in the used representation natively.

By implementing an Conversion one can parse these sources and convert

them into the intended representation. The inverse of an Conversion can

be provided by an ExportConversion, which will print the artifacts back

into their native form. For this thesis we have implemented one of both

conversion types. The JavaToEMFConversion parses Java code into the

EMFRepresentation used by the tool. Complementary we are able to print

Java code again using the EMFToJavaConversion. For both these conver-

sions we use JaMoPP [6].

6.3 Parsers

This section explains the implementation of parsers within the tool. In

Figure 6.8 we can see the abstract class ArtifactParser that provides the

interface for parsing arbitrary types of artifacts, and the main two parsers

used in the tool and during the evaluation of this work. The individual

parsers are provided by the desired and compatible representation.

6.3.1 EMF-Parser

This is the main parser the tool uses at the moment, since the respective

representation is the only one that provides printing capabilities to generate

source files again. The EMFParser utilizes the EMF resource handling to

parse artifacts. A resource in our case is a source file on the system [5]. The

artifacts are represented as EObject, which are contained in the generated

EMFArtifact that are added into the data structure.

68 Implementation

ArtifactParser

+parseArtifacts(File): HashSet<Node>

EMFParserJavaParser

Figure 6.8: UML Class Diagram for Artifact-Parsers

As discussed before we use JaMoPP [6] to convert Java code into the EMF

representation. The granularity of the code artifacts is very fine in this case

and even goes beyond statement level. So statements are also broken into

their bits and pieces down to just references of filed and variables in some

expressions.

Furthermore it is not clear how to specify an identifier for all of the dif-

ferent artifacts, possible in EMF. Therefore we need to add a meta model

for every EMFLanguage we want to add to the tool. According to this meta

model we include the type of the EObject (e.g. Class) and the attributes

it contains along with their attribute values (e.g. name=Main). Therefore

we can derive simple identifiers for the artifacts.

However this is still not enough for all kinds of artifacts, therefore we

came up with three annotation rules to extend the meta model with to be

able to generate a descriptive identifier for every EMFArtifact.

• id: This rule can annotate any reference from one EObject to another,

containing or cross-reference. It indicates objects that need to be

included in the identifier of an artifact. E.g. Java class methods have

their parameters as child artifacts, but we need them in the identifier

of the method artifact, therefore we need to add an id-rule to the

parameters reference.

6.3 Parsers 69

• atomic: Sometimes we may want to individually control the level of

granularity the artifacts are broken up to. E.g. in Java we want

to stop at the statement level, therefore we add an atomic-rule to the

expression statement in the meta model and indicate that all the child

artifacts should be considered in the identifier of the atomic artifact.

An atomic artifact also will set the atomic flag of int containing node,

so the extraction and composition will know to treat them in a special

way (see Chapter 4).

• ignore: Not all the attributes of an EObject are important, so we

want to be able to ignore some of them and not include them to the

identifier of the artifact. E.g. in Java comments are attributes of an

EObject, but these do not change the implementation of the artifacts,

therefore we want to exclude them form the identifier.

These rules are all structures the same. They are contained in an

EAnnotation object, named rules withing the type or reference. The rules

for this special type of EObject are entries within these annotations with

the name of the rule as key and as value is the string true if the rule should

apply here. Therefore rules can be enabled and disabled easily by changing

their value. An example for an atomic rule can be seen in Figure 6.9, for

the case of Java expression statements.

Figure 6.9: Atomic Rule for Java Expression Statements

70 Implementation

6.3.2 Java-Parser

The JavaParser uses the Java Compiler API [7] to parse Java source code

into an abstract syntax tree and wrap it into our used data structure for ar-

tifacts. This is the parser used for the evaluation of this thesis (see Chapter

7). The artifacts created by this parser are of the type JavaStringArtifact

that represents code as a string and go down to the statement level in gran-

ularity. Since we do not handle the references in the evaluation and leave

them unresolved anyway, the JavaParser does not even produce any refer-

ences, that would arise from the code, for simplicity.

6.4 Printer

In this section we highlight the printing of artifacts, back into the source rep-

resentation, or even into a different compatible representation. The printing

is only implemented for the EMFRepresentation at the moment and is ac-

cessible through the export interface of the Representation class. This will

be executed if a product is exported, respectively moved into an indepen-

dent project, in the tool support. For exporting the EMFRepresentation

the tool uses the EMF resource handling, like in the parser, but in the dif-

ferent way. Here the tool needs to create new resources and fill them with

the corresponding EObject instances in the product. Afterwards these re-

sources can be saved using their provided (from EMF) API. As discussed

before the tool can convert the EMFRepresentation of Java code into plain

Java code again, using JaMoPP [6]. Therefore it is also possible to print

Java code and get a products files as usually intended.

Chapter 7

Evaluation

This chapter evaluates the implemented approach using 4 case studies. The

focus of the evaluation will be the composition, since it is the main contribu-

tion of this thesis. We will begin with introducing the case studies, followed

bu the description of our evaluation scheme and the calculated metrics. At

the end we will conclude the chapter with the analysis of the result.

7.1 Case Studies

The evaluation was performed using the 4 case studies shown in Table 7.1.

All these case studies are implemented in Java and in the following subsec-

tion we will explain them in more detail.

Case-Study #F #P LoC #Art

Draw 5 12 287 - 473 491
VOD 11 32 4.7K - 5.2K 5.5K+
ArgoUML 11 256 264K - 344K 192K+
ModelAnalyzer 13 5 35K - 59K 94K+

#F: Number of Features, #P: Number of Products, LoC: Range of Lines
of Code, #Art: Number of Distinct Artifacts

Table 7.1: Case Studies Overview

The products of the first 3 case studies where derived from SPLs. There-

fore they represent a quite ideal case for our approach. Nevertheless they

are useful for the evaluation of the approach, since the products have no

72 Evaluation

evolutionary changes and did not diverge from each other, just as we would

expect products to be if they were implemented using our approach from

the beginning.

The last case study ModelAnalyzer represents the worst case for our ap-

proach. Its product variants have been developed by different engineers

independently over the course of many years. Therefore the variants di-

verged a lot from each other. for example bug fixes have been applied

to some products, but not all of them. This makes it extremely difficult

for the extraction to achieve a good result, which also strongly affects the

composition of new products.

7.1.1 Draw

The Draw case study is an SPL of simple drawing applications. Some of its

member products where used as examples in previous chapters. Its feature

model, which allows for 12 different products, supporting up to 5 features,

is depicted in Figure 7.1.

Base

Wipe Line Rect Color

Figure 7.1: Feature-Model for Draw

7.1.2 VOD

VOD is an SPL for video-on-demand streaming applications. It supports

11 features of which 6 appear in every variant. The feature model is shown

in Figure 7.2. It consists of 32 member products.

7.1.3 ArgoUML

With 256 possible product variants (see Figure 7.3), ArgoUML is the largest

of our case studies. It has 11 features, of which 3 appear in every product.

7.1 Case Studies 73

VOD

Pause PlayImm StartMovie StartPlayer VRCInterface Quitplayer SelectMovie

StopMovie ChangeServer Detail

Figure 7.2: Feature-Model for VOD

ArgoUML is an open source UML modeling tool that was refactored into

an SPL [8].

ArgoUML

Diagrams Cognitive Logging

Class State Activity UseCase Collaboration Deployment Sequence

Figure 7.3: Feature-Model for ArgoUML

7.1.4 Model Analyzer

The last case study ModelAnalyzer is a consistency checking and repair

technology. There is no feature model for this case study, because it is

not an SPL. Rather it consist of 5 product variants that where developed

through copying and adapting by different engineers pursuing their own

separate goals.

We where able to identify 13 features, through interviews with the de-

velopers. There where some difficulties because some developers partially

copies feature implementations and never completed them, because they

did not use them anyway. Also different developers used different names for

features. Therefore common a naming had to be established first. Please

note that no prior cleanup of the variants took place.

74 Evaluation

7.2 Evaluation Scheme

For the evaluation of the approach, it was automatically executed with

different numbers of input products using the case studies mentioned above.

As an initial run the evaluation uses all the existing product variants in a

product portfolio to create the database, recomposes all of them and com-

putes the metrics to show that the extracted information is sufficient to

fully re-engineer all input products. Subsequently the number of product

variants used as input for the creation of the database is decreased from

100% to 0% in steps by removing products randomly. Next we generate

these products that were not among the input products using the compo-

sition procedure and compare them to the respective original product of

the portfolio (i.e. its oracle product). This allows us to draw a conclusion

on the quality of newly generated products that were not used as input.

The quality of the composed products depends not only on the number of

input product variants, but also on the features they implement. There-

fore for every decreasing step we perform 10 runs for the current number of

input products, where we pick the input products randomly. We compute

the composition metrics for the recomposed products for every selection of

input products and then calculate the average values.

All of our here used case studies consist of Java source code. For perform-

ing this evaluation we used the Java parser (see Chapter 6). All placeholder

nodes where included in the composition, to fulfill the structural depen-

dencies of the data structure (i.e. include a parent node when at least one

of its child nodes is included). Moreover all use references to not included

artifacts where left unresolved. The order of the artifacts was considered

correct, if the order in the oracle product was included among the possible

orders to choose from. This means the software engineer would have gotten

the correct order as an option to select, which was always the case in our

case studies.

7.3 Evaluation Metrics 75

7.3 Evaluation Metrics

7.3.1 Composition Runtime

We measured the runtime of each composition performed, not included pars-

ing of the input products and extraction of the database (i.e. the creation

of a composer object and starting the composition with a set of features

as a parameter). Therefore this metric tells us exactly how long the en-

tire composition procedure takes. For each number of input products we

computed the average runtime for composing the products, as depicted in

Figure 7.4. As we can see there the runtime is mostly affected by the size

of the product since there are more artifacts to be restructured. Further-

more the number of features to be composed and the size of the database

influence the runtime of the composition.

0 10 20 30 40 50 60 70 80 90 100

10−1

100

101

102

103

Input Products [%]

R
u
n
ti

m
e

[m
s]

Draw VOD ArgoUML ModelAnalyzer

Figure 7.4: Runtime Overview

For more detail Table 7.2 shows the complete runtime the composition

76 Evaluation

took for the initial run, where all product variants have been re-composed,

for each case study. These values again do not contain any other parts

of the workflow like parsing or extraction and also exclude the time the

evaluation took for comparing the products. In Table 7.2 the number of

product variants and their implementation size are the most influencing the

runtime.

Case-Study Draw VOD ArgoUML ModelAnalyzer

Runtime 46ms 516ms 1min45.9sec 875ms

Table 7.2: Composition Runtime for Initial Run

The evaluation was performed on the following system: Intel Core i7-4770

@3.40GHz Haswell, 16GB of Memory, 64Bit environment.

7.3.2 Correctness

The correctness expresses the quality of the composed product. It reveals

if there are surplus artifacts and missing artifacts that where known to the

composition (i.e. contained in the database). Missing artifacts that are not

contained in the database, therefore have not been in any input product,

do not affect this metric.

This metric it computed as the relation of the number of artifacts that

the original product p and the composed product p′ have in common to the

number of artifacts that both products in their union that are also known to

the database DB. We use A.artifacts to denote a set of artifacts contained

in the respective product or database A.

Correctness [%]: commonCode
allCode−missingCodeDB

× 100

where commonCode = |p.artifacts ∩ p′.artifacts| and

allCode = |p.artifacts ∪ p′.artifacts| and

missingCodeDB = |p.artifacts \DB.artifacts|

Figure 7.5 shows the correctness with respect to the number of used input

products. We can observe that the correctness rises quickly with the number

7.3 Evaluation Metrics 77

of input products, as we would expect since the database gets more precise

the more input products are used to calculate it. However we can also see

that the composition already achieves a high correctness even with just a

fraction of the products (from 20% upwards) as input. The exception to

this is the ModelAnalyzer case study where the correctness drops if we use

more products as input. This is due to the fact that the product variant

only share a small portion of their implementation artifacts, which leads to

many surplus artifacts, that could not be separated from the few actually

needed artifacts gained by the new input product. Furthermore the limited

number of product variant for this case study makes it difficult to extract

more precise information. Nevertheless we still where able to achieve a

correctness between 40-60%.

0 20 40 60 80 100

0

20

40

60

80

100

Input Products [%]

C
or

re
ct

n
es

s
[%

]

Draw
VOD

ArgoUML
ModelAnalyzer

Figure 7.5: Correctness Overview

7.3.3 Completeness

Completeness is the percentage of artifacts from the oracle product p also

found in the corresponding composed product p′.

78 Evaluation

Completeness [%]: commonCode
|p.artifacts| × 100

Complementary to the correctness, the completeness reveals whether there

were artifacts missing in the composed product, even if these artifacts did

not occur in the input products. Meaning the composition worked optimal

if both these measures, the correctness and the completeness, are 100%.

In Figure 7.6 we can see that the completeness is rising to 100% even

faster than the correctness. The cases in which the completeness is already

at its maximum but the correctness is not, imply the composition put extra

artifacts in the product, because the extraction could not trace all artifacts

to a single module. For our first three case studies the results in complete-

ness are very similar to the correctness and reach a near optimum already

at around 20%. Again results achieved for the ModelAnalyzer case study

are below the other ones, due to its strongly diverged product variants. Yet

the completeness between 60-70% is still promising.

0 20 40 60 80 100

0

20

40

60

80

100

Input Products [%]

C
om

p
le

te
n
es

s
[%

]

Draw
VOD

ArgoUML
ModelAnalyzer

Figure 7.6: Completeness Overview

7.3 Evaluation Metrics 79

7.3.4 Warnings

The warnings generated during the composition are important for the soft-

ware engineer to complete the composed product variants. Therefore we

measured the number of warnings generated for each composition, shown

in Figure 7.7 and Figure 7.8.

0 20 40 60 80

101

102

103

104

Input Products [%]

M
is

si
n
g

M
o
d
u
le

W
ar

n
in

gs
[#

]

Draw VOD ArgoUML ModelAnalyzer

Figure 7.7: Missing Modules Overview

As we can see, after a short initialization, the number of warnings goes

down exponentially with the number of input products, which correlates

to the reading for correctness and completeness, since we should have less

warnings the closer we are to the perfect composition. In the case of the

ModelAnalyzer the number of warnings also correlate to the correctness,

therefore we get more warnings with more input products since the variants

are too far diverged in this case.

Furthermore we measured the warnings received during composition in

respect of the order of the modules in the warnings. In Figure 7.9 we

can see the warnings in average for each composition performed during the

80 Evaluation

0 20 40 60 80

100

101

102

103

104

Input Products [%]

S
u
rp

lu
s

M
o
d
u
le

W
ar

n
in

gs
[#

]

Draw VOD ArgoUML ModelAnalyzer

Figure 7.8: Surplus Modules Overview

evaluation, grouped by the order of their modules.

We can see that the behavior of the module warnings per order is very

similar for all case studies. The possible orders of modules depend on the

number of features in the product portfolio. So in the center of the graphs,

there are the most warnings in the mid range of the possible orders of

modules. Base module warnings did occur less often since the variants

usually have the most features in common and also the features can be

distinguished quite nice. For the ModelAnalyzer there are more base module

warnings, since a lot of features are only implemented by single variants and

moreover it is not possible to distinguish all the features, due to the low

number of product variants. We can assume that the higher the order of

modules, the less likelier their are any implementation artifacts associated

with them. Therefore we can consider most of the higher order warnings as

false positive warnings. That is the reason the tool allows to set a threshold

for the modules, to filter out these less important warnings.

7.4 Analysis 81

0 2 4 6 8 10 12

10−1

100

101

102

103

Module Order [#]

M
o
d
u
le

W
ar

n
in

gs
[#

]

Draw VOD ArgoUML ModelAnalyzer

Figure 7.9: Warnings per Order

7.4 Analysis

In summary the results of the evaluation look very promising. The runtime

for the composition is somewhere in the millisecond range and even for

the fairly large products of ArgoUML the composition of a product took

less than a second. Further the quality of the composed products looks

very promising as well. The correctness and completeness get higher the

more input products are provided, yet already achieve great results with

just a fraction of the product portfolio as input. Only the ModelAnalyzer

case study did not achieve such great, albeit still promising, results due to

the strong diverged input products in combination with the low number of

products available. What was learned from these results is also reflected in

the warnings the composition generates. Therefore the better the quality

of the composed products was, the less warnings have been issued, which

82 Evaluation

is of course the way it is intended. It makes sense to introduce a threshold

for the maximum order of modules in the warnings to reduce them. This is

valid since most higher order modules do not contain any implementation

artifacts anyway.

Chapter 8

Threats to Validity

The extraction algorithm used in the presented approach, that lies behind

the tool support, assumes that the product variants still have major portions

of their implementation in common. However, if the approach should be

used to extract trace information from products that where implemented

more independent from each other, these products will not share the same

code. This problem will also arise if evolutionary changes to the product

variant (e.g. bug fixes) are not propagated through the entire product

portfolio. In all cases where the product variants diverged too much during

their development or maintenance the core assumption of the extraction

algorithm will no longer hold. Nevertheless if the approach is used form

the very beginning of developing a product portfolio these problems will

not arise, since the variants will not diverge from each other. In this case

the approach will find almost ideal conditions and its benefits can be fully

leveraged. Moreover there are ways to better cope with this threat (e.g.

code-clone detection techniques) to also recognize similarities in diverged

products.

84 Threats to Validity

Chapter 9

Related Work

Xue et al. use diffing algorithms to identify the common and variable parts

of product variants, which are subsequently partitioned using Formal Con-

cept Analysis [23]. To these partitions, Information Retrieval algorithms

are applied to identify the code units specific to a feature. In contrast with

the proposed work, they do not explicitly distinguish the code units that

stem from single features from those of feature interactions. However, we

will explore how to leverage advanced diffing techniques employed in this

work for detecting a wider spectrum of software artifact changes.

Rubin et al. propose a framework for managing product variants that are

the result of clone-and-own practices [21]. They outline a series of operators

and how they were applied in three industrial case studies. These opera-

tors serve to provide a more formal footing to describe the set of processes

and activities that were carried out to manage the software variants in the

different scenarios encountered in the case studies.

Koschke et al. aim to reconstruct the module view of product variants

and establish a mapping of code entities to architecture entities, with the

goal of consolidating software product variants into software product lines

by inferring the software product line architecture [13]. For this they adapt

the reflection method by applying it incrementally to a set of variants taking

advantage of commonalities in their code, for which they use clone detection

86 Related Work

and function similarity measures.

In [20] Rubin et al. survey feature location techniques for mapping fea-

tures to their implementing software artifacts. The extraction process in

our work can also be categorized as a feature location technique, only that

we also consider additional problems like feature interactions instead of just

single features and also the order of artifacts instead of just their presence

or absence. Another feature location survey exists by Dit et al. [11]. Other

traceability and information mining algorithms are presented by Ali et al.

in [1], by Capobianco et al. in [9] or by Kagdi et al. in [19]. Indeed Ghezzi et

al. argue that there could be additional information relevant for extraction

and composition [18].

When making changes or bug fixes to features using our approach similar

advantages can be leveraged as presented by Beek et al. in [22] when it

comes to testing, like only having to test certain product variants and not

all.

Chen et al. [10] present a way of displaying traceability links which could

be used to visualize the traceability information extracted by our approach.

Nguyen et al. present JSync [17], a tool for managing clones in software

systems. Techniques like these could be useful for us when recovering legacy

product variants that have diverged significantly.

Chapter 10

Future Work

In our future work we want to extend the approach with a few technological

additions. For example we want to reduce the number of possible order by

detecting and eliminating orders that are semantically the same. Further-

more we want to refine the orders by removing statement sequences that

do not make much sense (like assigning the same variable twice without

reading it in between).

The composition could be enhanced by providing some rules, maybe in

form of a meta model, to be able to make more intelligent decisions. E.g. in

Java a method gets included because on of its statements traces to a selected

feature. To be syntactically correct also the methods returns type and

parameter have to be added, which may trace to a not selected association

and therefore would not be included in the composed product. One could

define rules to always include the return type and the parameters with their

method.

Also the rules added to the EMF meta models could benefit from some

refinement. So that they no longer can just we true or false, but rather

point to elements that do or do not belong into the identifier. E.g. for Java

methods we want their parameters in the identifier, but not the parameters

names, since they do not belong to the methods signature. With the current

implementation it is not possible to define this.

88 Future Work

Lastly we want to extend the tool with the ability to be able to edit the

database. Therefore software engineers would be able to manually refine

the trace information, to enable the composition to provide better results.

Moreover it should be possible to make changes to the code in the database,

to maintain the contained features. This would enable the user to recompose

all the products which implement the changed feature and not manually

have to fix each product individually.

Chapter 11

Conclusion

We presented an composition algorithm along with a tool supporting soft-

ware engineers in the compositions of products base on selecting features.

Moreover the tool includes an extraction algorithm (implemented by [4]) to

provide the necessary trace information to be able to compose code based

on the desired features. The composition does not only consider traced code

lines and their position, but also dependencies between implementation ar-

tifacts and their order. Further the concept is highly generic and can be

used to compose any kind of artifacts, as long as the necessary parser and

printer are provided.

During the evaluation we saw that the quality of the composed products

is very high with already a small number of input products and that all the

input products always could be reconstructed perfectly.

A overview of the implemented tool support was given, which covered all

the major parts needed to utilize the tool. The approach lying behind this

tool was also discussed in this thesis to clarify the operating principles used

in the tool support.

90 Conclusion

List of Figures

2.1 Product P3 . 11
2.2 Source Code Snippets for the initial Drawing Applications . 15
2.3 Source Code Snippets for Product 4 16
2.4 Source Code Snippets for Product 5 16

3.1 Overview . 18
3.2 Associations extracted from our Drawing Applications 22

4.1 Data structure for Product P1 [4] 24
4.2 Sequence graph derived from Products P1, P2, P3 26
4.3 Intersecting modules of P1 and P2 28
4.4 Intersecting code of P1 and P2 29
4.5 Sequence graph derived from Products P1, P2, P3 31
4.6 Composition Steps . 33
4.7 Desired modules for composing P4 33
4.8 Selected Associations for composing P4 35
4.9 Modules of the selected associations 35
4.10 Calculating Missing & Surplus Modules 36
4.11 Merging Trees for composing P4 37
4.12 Resolved references in product P4 39
4.13 Possible orders of Buttons in P4 40

5.1 Create new Project . 42
5.2 Define Name and Location 42
5.3 Select input Product Variants 43
5.4 Choose a Representation for Java files 44
5.5 Parsed Product Variants . 44
5.6 Database View . 45
5.7 Compose Product P4 . 46
5.8 Missing Modules . 46
5.9 Surplus Modules . 47
5.10 Resolve Use References . 48
5.11 Choose Order of Statements 49
5.12 Composed Product P4 . 49
5.13 Java Project for Product P4 51
5.14 Locate Feature WIPE in the Code 52
5.15 Add a Product Variant . 53

92 LIST OF FIGURES

5.16 Features implemented in a Product Variant 54
5.17 Implementation Artifacts of a Product Variant 54
5.18 Configuring the Tool . 55
5.19 Manual select Associations 56

6.1 UML Class Diagram for Database, Association, Module and
Feature . 58

6.2 UML Class Diagram for Product, Artifact and Node 60
6.3 UML Class Diagram for Composer 61
6.4 Sequence Graph as Implemented 62
6.5 Alternative Implementation to generate Orders 63
6.6 UML Class Diagram for CompositionProject and its Work-

load Threads . 65
6.7 UML Class Diagram for Artifact-Representations 66
6.8 UML Class Diagram for Artifact-Parsers 68
6.9 Atomic Rule for Java Expression Statements 69

7.1 Feature-Model for Draw . 72
7.2 Feature-Model for VOD . 73
7.3 Feature-Model for ArgoUML 73
7.4 Runtime Overview . 75
7.5 Correctness Overview . 77
7.6 Completeness Overview . 78
7.7 Missing Modules Overview 79
7.8 Surplus Modules Overview 80
7.9 Warnings per Order . 81

List of Tables

2.1 Initial Drawing Application Product Variants 10
2.2 New Drawing Product Variants 12

7.1 Case Studies Overview . 71
7.2 Composition Runtime for Initial Run 76

94 LIST OF TABLES

Bibliography

[1] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol. Trustrace: Mining software
repositories to improve the accuracy of requirement traceability links.
IEEE Trans. Software Eng., 39(5):725–741, 2013.

[2] S. Apel and C. Kästner. An overview of feature-oriented software de-
velopment. Journal of Object Technology, 8(5):49–84, 2009.

[3] I. Sommerville. Software engineering. Pearson Education, Inc., 9th
edition, 2011.

[4] L. Linsbauer. Reverse Engineering Variability from Product Vari-
ants. In Master’s Thesis, Johannes Kepler University Linz., Septem-
ber, 2013.

[5] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2nd edition, De-
cember 16, 2008.

[6] JaMoPP (2013). JaMoPP. http://www.jamopp.org/ (accessed 2013).

[7] JCAPI (2013). Source code analysis using java 6 apis.
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-
using-java-6-compiler-apis.html. (accessed 2013).

[8] ArgoUML (2013). Argouml-spl project. http://argouml-spl.tigris.org/
(accessed 2013).

[9] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and
S. Panichella. Improving ir-based traceability recovery via noun-based
indexing of software artifacts. Journal of Software: Evolution and Pro-
cess, 25(7):743–762, 2013.

[10] X. Chen, J. G. Hosking, and J. Grundy. Visualizing traceability links
between source code and documentation. In M. Erwig, G. Stapleton,
and G. Costagliola, editors, VL/HCC, pages 119–126. IEEE, 2012.

[11] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location
in source code: a taxonomy and survey. Journal of Software: Evolution
and Process, 25(1):53–95, 2013.

http://www.jamopp.org/
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html
http://argouml-spl.tigris.org/

96 BIBLIOGRAPHY

[12] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and
K. Czarnecki. An exploratory study of cloning in industrial software
product lines. In 17th European Conference on Software Maintenance
and Reengineering (CSMR), 2013. Best Paper Award.

[13] R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angstmann. Extending
the reflexion method for consolidating software variants into product
lines. Software Quality Journal, 17(4):331–366, 2009.

[14] L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. Recovering trace-
ability between features and code in product variants. In accepted
for publication at the Sevententh International Software Product Line
Conference (SPLC), 2013.

[15] J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of
legacy applications. In Proc. of 28th int. conf. on Software engineering,
ICSE ’06, pages 112–121, New York, NY, USA, 2006. ACM.

[16] T. Mende, F. Beckwermert, R. Koschke, and G. Meier. Supporting the
grow-and-prune model in software product lines evolution using clone
detection. In Software Maintenance and Reengineering, 2008. CSMR
2008. 12th European Conference on, pages 163–172, 2008.

[17] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen. Clone management for evolving software. IEEE Trans. Soft-
ware Eng., 38(5):1008–1026, 2012.

[18] G. Ghezzi and H. C. Gall. A framework for semi-automated software
evolution analysis composition. Autom. Softw. Eng., 20(3):463–496,
2013.

[19] H. H. Kagdi, M. Gethers, and D. Poshyvanyk. Integrating conceptual
and logical couplings for change impact analysis in software. Empirical
Software Engineering, 18(5):933–969, 2013.

[20] J. Rubin and M. Chechik. A survey of feature location techniques. Do-
main Engineering: Product Lines, Conceptual Models, and Languages.
Springer, To appear.

[21] J. Rubin, K. Czarnecki, and M. Chechik. Managing cloned variants:
a framework and experience. In T. Kishi, S. Jarzabek, and S. Gnesi,
editors, SPLC, pages 101–110. ACM, 2013.

[22] M. H. ter Beek, H. Muccini, and P. Pelliccione. Guaranteeing correct
evolution of software product lines. ERCIM News, 2012(88), 2012.

[23] Y. Xue, Z. Xing, and S. Jarzabek. Feature location in a collection of
product variants. In WCRE, pages 145–154. IEEE Computer Society,
2012.

Lebenslauf

Persönliche Daten

Name Stefan Fischer

Geburtsdatum 12.Dezember.1986

Staatsbürgerschaft Österreich

Führerschein B

Ausbildung

2012 – jetzt Master Studium Software Engineering an der Jo-

hannes Kepler Universität Linz

2007 – 2012 Bachelor Studium Informatik an der Johannes Ke-

pler Universität Linz

2006 – 2007 Wehrpflicht geleistet in Hörsching, Wels und Ried

im Innkreis

2001 – 2006 HTL für Industrielle Elektronik in Braunau

98 Lebenslauf

Berufserfahrung

2013 – jetzt Studentischer Mitarbeiter am Institut für Software

Systems Engineering an der Johannes Kepler Uni-

versität Linz

2008 2 Monate Praktikum bei der SPS Industrie Elektrik

in Braunau am Inn (Anlagen Automatisierung)

2007 6 Wochen Praktikum bei der SPS Industrie Elektrik

in Braunau am Inn (Anlagen Automatisierung)

2005 4 Wochen Praktikum bei Kowe (Zerspanungstech-

nik)

2004 3 Wochen Praktikum am Gemeindeamt Mining

2002 4 Wochen Praktikum bei der IWK Maschinenbau

in Altheim

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig

und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und

Hilfsmittel nicht benutzt bzw. die wörtlich oder sinngemäß entnommenen

Stellen als solche kenntlich gemacht habe. Die vorliegende Diplomarbeit ist

mit dem elektronisch übermittelten Textdokument identisch.

Linz, Februar 2014

Stefan Fischer

	Danksagung
	Kurzfassung
	Abstract
	Introduction
	Software Reuse
	Clone-and-Own
	Software Product Line Engineering

	Goals of this Thesis
	Chapter Description

	Background and Example
	Example
	Modules
	Associations

	Workflow & Principles
	Overview
	Extraction
	Composition

	Technical Realization
	Data structures
	Extraction
	Module Calculation
	Intersecting
	Sequencing

	Composition
	Selecting Code
	Tree Merging
	References
	Code Order

	Tool Support
	Demo Scenario
	Other Capabilities

	Implementation
	Data structure and Core Operations
	Features and Modules
	Nodes and Artifacts
	Composition
	Ordering

	Tool
	Project
	Representation

	Parsers
	EMF-Parser
	Java-Parser

	Printer

	Evaluation
	Case Studies
	Draw
	VOD
	ArgoUML
	Model Analyzer

	Evaluation Scheme
	Evaluation Metrics
	Composition Runtime
	Correctness
	Completeness
	Warnings

	Analysis

	Threats to Validity
	Related Work
	Future Work
	Conclusion
	Lebenslauf
	Eidesstattliche Erklärung

